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Περίληψη

Στην σύγχρονη εποχή, οι ζωές μας επηρεάζονται πολύ από τα κοινωνικά δίκτυα στα

οποία ανήκουμε. Παρόλαυτα, δεν έχουμε ακόμα κατανοήσει σε βάθος ούτε το πώς αυτά

δουλεύουν, ούτε το πώς οι αλληλεπιδράσεις μεταξύ των ανθρώπων επηρεάζουν το κοινωνι-

κό δίκτυο. Εμπνευσμένοι από αυτές τις παρατηρήσεις, προσπαθούμε να μοντελοποιήσουμε

με μαθηματικό τρόπο τις αλληλεπιδράσεις και την ανταλλαγή απόψεων μεταξύ των πρα-

κτόρων, εισάγωντας μοντέλα που προσομοιώνουν την διαμόρφωση των απόψεων στο κοινω-

νικό δίκτυο. Οι σημαντικότερες ερωτήσεις που προσπαθούμε να απαντήσουμε είναι εάν τα

μοντέλα αυτά οδηγούν τους πράκτορες να συγκλίνουν σε συγκεκριμένες σταθερές απόψεις

και, σε αυτήν την περίπτωση, πόσο γρήγορα το σύστημά μας φθάνει σε αυτή την σταθερή

κατάσταση.

Σε αυτή την διπλωματική εργασία, μελετάμε σύνθετα μοντέλα που επιτρέπουν στις α-

πόψεις των πρακτόρων και στο υποκείμενο κοινωνικό δίκτυο να συνεξελίσσονται. Αρχικά

παρουσιάζουμε τα βασικά μοντέλα διαμόρφωσης άποψης, καθώς και τα σημαντικότερα απο-

τελέσματα για τις ιδιότητες σύγκλισής τους, και στην συνέχεια επικεντρώνουμε την ανάλυσή

μας στο συνεξελικτικό μοντέλο Hegselmann-Krause (HK) και στις διάφορες παραλλαγές

του. Συνεχίζουμε παρουσιάζοντας μία συλλογή από τα σημαντικότερα μαθηματικά εργαλε-

ία και θεωρήματα που χρησιμοποιούνται για την ανάλυση πολλών μοντέλων διαμόρφωσης

άποψης και, τελειώνοντας, καταδεικνύουμε την δύναμη της 𝑠-ενέργειας ενός συστήματος ως

εργαλείο ανάλυσης, χρησιμοποιώντας το για την μελέτη των ιδιοτήτων σύγκλισης αρκετών

παραλλαγών του HK μοντέλου.

Λέξεις-Κλειδιά: Αλγοριθμική Θεωρία Παιγνίων, Κοινωνικά Δίκτυα, Δυναμική Διαμόρ-

φωση ΄Αποψης, Συνεξελικτικά Μοντέλα



Abstract

In the modern world, our lives are heavily influenced by the social networks we belong

to. However, we still do not have a deep understanding of the way they work, or how

the interactions between agents influence the network. Inspired by this observations, we

attempt to formalize the agents’ interactions and exchange of opinion by introducing

and analyzing several mathematical models that simulate the formation of opinions in

our social network. The main questions we focus our attention on are whether these

models lead the agents to converge to certain fixed opinions and, if so, how fast the

system reaches this stable state.

In this diploma thesis, we study complex models that allow the agents’ opinions and

the underlying social network to coevolve. We begin by presenting the basic opinion

formation models, along with the most important results about the convergence prop-

erties, before focusing on the Hegselmann-Krause (HK) coevolutionary model and its

variants. We continue by introducing a collection of the most important mathematical

tools and theorems that are used to analyze many opinion formation models and finally,

we demonstrate the power of a system’s 𝑠-energy as an analysis tool, as we use it to

study the convergence properties of several variations of the HK model.

Keywords: Algorithmic Game Theory, Social Networks, Opinion Dynamics, Coevo-

lutionary Models
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Chapter 1

Introduction

In this diploma thesis, we are dealing with opinion formation models in social net-

works. The complexity and significance of real-world social networks in our everyday

lives makes the need to understand them more important than ever. This need is am-

plified by the rapid growth of the Internet which provides the medium for larger, more

complex social networks to exist, that are quite different from traditional social networks

and lead to an even more dynamic opinion exchange between the people in the network.

The high level of correlation between the interactions in real social networks lead us to

develop mathematical models to aid in our analysis of their behavior. Hence, we are

able to study these models in a mathematical framework, and provide concrete proofs

about their interesting properties.

Opinion formation models are of significant importance, as their applications can be

observed all around us, at any interaction we take part in. The underlying principles

that govern the way these models work attempt to explain our behavior in real social

networks, and any information we can discover about their properties will have an im-

mediate effect on the way we choose our opinions about a certain topic. Observations

about how people form their opinions can impact fields ranging from psychology and

sociology to political science and social choice. Almost all people hold an opinion about

varying factors, like economic welfare, religion, ecucation and culture, and these opin-

ions can only be transmitted from one person to another. Since the disagreement of a

person with the other people in his social group incurs upon them some kind of cost,

from psychological effects to even social ostracisation, studying such interactions has

significant merit, if we wish to understand why people all around the world behave as

they do.

Due to their ubiquity and importance, opinion dynamics have been studied exten-

sively [1]. While the study of opinion formation models is a field that exists for quite

1
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some time, its recent revival and the use of modern techniques has allowed for the dis-

covery of several key models and properties, while providing us with the most significant

results as of yet. The study of such concepts began in 1956, with the ideas presented by

French [2], but the first important results about the convergence properties of early mod-

els were provided by the pioneering work of DeGroot in 1974 [3]. The next decades saw

the research community attempting to generalize DeGroot’s simplistic model, which led

to the development of many variations, the most important of them being the Friedkin-

Johnsen model [4]. However, we were not yet satisfied by the complexity of interactions

that our models could simulate, and that line of thinking led to the development of co-

evolutionary models, with the most important one being the Hegselmann-Krause model

[5]. More recent attempts to model real social networks include randomness in the way

that people in the network update their opinions [6, 7].

While we wish to understand as much as we can about every model that describes

certain social networks, we usually focus on two main questions. Specifically, we attempt

to discern whether our models lead the people in our network to converge to a specific

set of fixed opinions and, if so, how fast they approach these opinions. Our approach

is entirely algorithmic in its nature and we view such models from a game-theoretic

perspective, where we study the macroscopic effect of the selfish actions of people in

our network. Motivated by observations similar to ours, the convergence properties of

opinion formation models have been extensively studied in the discrete setting, where

people choose from a finite set of discrete opinions [8–10]. This line of thiniking is closer

in spirit to the fields of social choice and voting theory.

Other approaches focus on the importance of going beyond understanding when

agents converge to fixed opinions, and studying the social cost of the outcomes that

emerge [11–13]. These studies are generally inspired by the observation that convergence

rarely emerges in real social networks and, even if it does, different equilibria have

different levels of desirability among the people. Recent work attempts to blend the

field of opinion dynamics with other, seemingly unrelated, fields such as chemotaxis,

synchronization and bird flocking, with the introduction of systems that generalize all

the aforementioned fields, called influence systems [14–17]. Such systems are observed

in nature, and typically consist of a general rule that indicates how each agent in the

system updates his state by processing the information it receives from its neighbors.

Our focus in this thesis lies in coevolutionary models, in which the peoples’ opinions

and the underlying social network continuously affect each other, thus they coevolve.

Other approaches study coevolutionary generalizations of the DeGroot model [18], or

models in which agents are skeptical twoards opinions far away from theirs [19]. We

study the Hegselmann-Krause model in the continuous opinion space, introduce several

of its variations and attempt to analyze their convergence properties. However, we feel
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that our approach is not complete, unless we also provide a collection of useful mathe-

matical tools utilized to derive significant results about these models. The complexity

of coevolutionary models has shown the need to associate techniques used in different

areas of algorithmic game theory, or even derive new ones. Theories such as potential

functions, fixed-point theorems and concave games have shed light on the existence and

uniqueness of stable states in our system, while tools like gradient descent and the,

newly invented, 𝑠-energy of a system are very helpful in our attempts to discern which

conditions lead opinion formation models to converge to these stable states.

We begin by providing some necessary definitions and notation, followed by an

overview of the information presented in each chapter.

1.1 Notation and Definitions

In this section, we are going to present the basic notation and definitions required to

follow the ideas presented in the rest of this thesis. In every opinion formation model

there exists a group of 𝑛 agents, usually numbered 1 to 𝑛, that express their opinions

and beliefs about certain topics. We represent these expressed opinions by a vector 𝑥,

where 𝑥𝑖 denotes the expressed opinion of agent 𝑖. Usually we study the models in 1

dimension, hence 𝑥𝑖 ∈ R or even 𝑥𝑖 ∈ [0, 1] in some cases. In the most general setting

however, each agent expresses an opinion about multiple topics, simultaneously, and each

𝑥𝑖 is a tuple consisting of these opinions. Therefore, in this case, 𝑥𝑖 ∈ R𝑑, where the

model’s dimension 𝑑 is the number of simultaneous opinions that each agent expresses.

For example, these opinions can represent 𝑖’s position on the political spectrum, 𝑖’s

sympathy towards a specific sports team, or even a probability that 𝑖 holds a particular

belief.

Furthermore, in every model, each agent forms at each step a neighborhood that

determines which other agents influence her opinion. We denote 𝑖’s neighborhood by

𝒩𝑖, and note that it can vary with time, or depend on other model-specific parameters.

In cases where |𝒩𝑖| = 𝑛 for every agent 𝑖, we have an instance of the model where each

agent influences all others, and information and opinions spread quickly through our

network. When 𝒩𝑖 = {𝑖}, we understand that agent 𝑖 is influenced only by his own

opinion, therefore we expect her to remain at a fixed position.

We also define the concept of the pure strategy Nash equilibrium, introduced in the

field of game theory by Nash [20], which, when applied to opinion dynamics, clearly

describes a state where no agent has an interest in changing her opinion. The Nash

equilibrium has emerged as the standard solution concept in non-cooperative games,

and opinion formation models are no exception. Indeed, our analysis usually consists
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of first attempting to prove the existence of such an equilibrium for a given model, and

then trying to show that the dynamics of our model converge to an equilibrium.

Next, we define a special kind of equilibrium called consensus.

Definition 1.1 (Consensus). Consider an opinion formation model with 𝑛 agents where

all agents share exactly the same opinion. Therefore, for all agents 𝑖

𝑥𝑖 = 𝑥* (1.1)

We note that no agent has an incentive to deviate from 𝑥*, therefore this state is a

Nash equilibrium. We call this equilibrium where all agents express the same opinion a

consensus.

As stated before, we study models from the aspect of their convergence to an equilib-

rium. However, another inetresting question to consider here is, given that the system

converges to a specific equilibrium, how quickly do agents approach their opinions at

that equilibrium? This question demonstrates the need for formalization of the concept

of the number of time steps it takes for agents’ opinions to converge. In our models, we

call this number the rate of convergence and, since our approach is algorithmic, we are

interested only in its asymptotic behavior.

Continuing with our definitions, the update rule of a model is the rule that governs

the way each agent updates her expressed opinion at each time step. Usually, we denote

such a rule as

𝑥(𝑡+ 1) = 𝐴(𝑥(𝑡))𝑥(𝑡) (1.2)

in the general setting. However, there are many variations of this rule, as we will

present in the following chapters, and each one defines a different opinion formation

model. 𝐴(𝑥(𝑡)) is a 𝑛 × 𝑛 matrix which encodes the influence that any agent has

towards any other. While 𝐴(𝑥(𝑡)) can generally be any matrix, the logical and useful

models impose some constraints on agent interactions, therefore on 𝐴(𝑥(𝑡)) as well.

In many models we are given a weighted graph 𝐺 = (𝑉,𝐸), which represents the

underlying social network. In 𝐺, every node represents an agent, and the existence and

weight of an edge between two nodes represents the strength of influence between the

two corresponding agents.

Next up, we characterize the agents according to their willingness to change opinions,

or stubbornness. We distinguish agents having 𝑤𝑖𝑖 > 0, who we call stubborn agents, and

agents having 𝑤𝑖𝑖 = 0, who we call non-stubborn agents. We can distinguish even further
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among stubborn agents, between those having 𝑤𝑖𝑖 = 1 and 𝑤𝑖𝑗 = 0, for any other agent

𝑗, who we call fully-stubborn agents, and those having 𝑤𝑖𝑖 < 1, who we call partially-

stubborn agents.

It is therefore evident that these definitions can model a wide variety of phenomena

in which nodes in a system hold a numerical value, influence each other and update their

values. In these phenomena the agents need not necessarily be people, but could also

be computers in a network, as is sometimes the case.

1.2 Organization of the Thesis

In Chapter 2, we introduce the basic opinion formation models. We distinguish

between linear and non-linear (coevolutionary) models, and begin by presenting the

DeGroot model, perhaps the most important among the linear models. We provide

its definition and define clearly which properties lead to convergence when they exist.

We continue by introducing the Friedkin-Johnsen (FJ) model, a variation of DeGroot’s,

and state its known convergence results. Next, we switch our attention to coevolution-

ary models, and introduce the most significant among them, the Hegselmann-Krause

model. We present its characteristics and convergence properties, before moving on to

the Deffuant-Weisbuch model, which differs from the all models mentioned before, as it

introduces randomness in the agents’ update rule.

The purpose of Chapter 3 is to introduce several variants of the Hegselmann-Krause

model. In the Network-HK model, we extend the original HK model with the addition

of an underlying graph which imposes constraints on each agent’s neighborhood, thus

limiting the spread of information through the social network. Next, we present the

Random-HK model, which is an attempt to introduce randomness to the original HK

model. We continue with the Inertial-HK model, which is a heterogeneous variant of the

original HK, and use it to settle the issue of convergence for the HK model with fully-

stubborn agents. In the Asymmetric 𝑘-Nearest Neighbor (𝑘-NN) model, we present, for

the first time, a variant of the HK model that does not always converge and provide an

indicative counterexample. Finally, we introduce the Generalized Asymmetric model,

an attempt to provide a much more general opinion formation model, with unknown

convergence properties as of yet. However, we show that it always admits to a pure

strategy Nash equilibrium, under certain assumptions.

In Chapter 4, we present a collection of mathematical tools and theorems utilized in

the analysis of several different opinion formation models. We distignuish between tools

used to prove the existence, and sometimes uniqueness, of equilibria and tools used to

show whether a system converges or not. The former include potential functions, fixed-

point theorems and concave functions, from which we derive an important result which
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characterizes the models that admit to equilibria. The latter include gradient descent

methods and 𝑠-energy methods, with the last one being a newly introduced concept in

our field which may yet provide interesting results.

Chapter 5 contains our research work. Initially, we provide a proof of convergence

for the Network-HK model using the 𝑠-energy approach. Then, we attempt to provide

some intuition into the proof of convergence of the Inertial-HK model, as we believe the

thought process hidden behind the proof is of substantial value.



Chapter 2

Opinion Formation Models

The purpose of this chapter is to introduce the reader to the most commonly studied

and analyzed opinion formation models in the field of opinion dynamics. In addition

to the basic definitions, we present a collection of the most important algorithms and

results. We present the models starting from simple, linear models and progressing to

more complex ones, that capture a wider variety of real-world scenarios.

2.1 Linear Models

In every linear model there exists a group of 𝑛 agents, numbered 1 to 𝑛, that express

their opinions and beliefs about a certain topic. We assume that each agent 𝑖 holds an

opinion that is equal to a real number 𝑥𝑖. Furthermore, there exists a weighted graph

𝐺 = (𝑉,𝐸), that represents the underlying social network. Each agent is represented by

a node in 𝐺, and agent 𝑖 is influenced by agent 𝑗’s opinion if and only if there exists an

edge 𝑒 = (𝑖, 𝑗) in 𝐺, from 𝑖 to 𝑗. Moreover, the weight of the edge 𝑒, denoted by 𝑤𝑖𝑗 ≥ 0,

represents the strength of 𝑗’s influence over 𝑖.

Before we proceed, we will provide some necessary notation. We will denote the

vector of the agents’ opinions by 𝑥(𝑡) at time 𝑡 and the matrix of the agents’ weights by

𝐴, meaning that the (𝑖, 𝑗) element of matrix 𝐴 is 𝑤𝑖𝑗 . In linear models, the influence

of one agent over another does not change with time. Therefore, the underlying graph

𝐺 is a steady graph, and 𝐴 is a constant matrix. If there does not exist an edge from

agent 𝑖 to agent 𝑗 in 𝐺, we assign 𝑤𝑖𝑗 = 0 to capture the fact that 𝑖’s opinion does not

depend on 𝑗’s opinion. We also define the set 𝒩𝑖 = {𝑗 : (𝑖, 𝑗) ∈ 𝐸(𝐺)} and call it the

neighborhood of agent 𝑖. When our model allows for self loops in 𝐺, we assume 𝑤𝑖𝑖 ̸= 0

and it is understood that 𝑖 ∈ 𝒩𝑖 for every agent 𝑖.

7
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2.1.1 The DeGroot Model

The first model that we introduce is a very simple yet incredibly expressive model

first introduced by DeGroot [3] in 1974. In the DeGroot model, at each time step

𝑡, every agent 𝑖 updates her opinion to the weighted average of her current opinion

and the current opinions of her neighbors. Without loss of generality, we assume that∑︀
𝑗∈𝒩𝑖

𝑤𝑖𝑗 = 1, since we can always normalize the weights to 1. This means that 𝐴 is a

stochastic matrix, since each row of 𝐴 consists of nonnegative real numbers, and sums

up to 1. It is easy to see that

𝑥𝑖(𝑡+ 1) = 𝑤𝑖𝑖𝑥𝑖(𝑡) +
∑︁
𝑗∈𝒩𝑖
𝑗 ̸=𝑖

𝑤𝑖𝑗𝑥𝑗(𝑡) (2.1)

or, in matrix form

𝑥(𝑡+ 1) = 𝐴𝑥(𝑡) (2.2)

We can distinguish between two cases of the DeGroot model that give different results,

the undirected and the directed DeGroot model. In the undirected case, we assume that

for every pair of agents 𝑖 and 𝑗, 𝑤𝑖𝑗 = 𝑤𝑗𝑖, which means that the influence of agent 𝑖

over agent 𝑗 is equal to 𝑗’s influence over 𝑖. Therefore, 𝐴 = 𝐴𝑇 and the undirected

DeGroot model is a symmetric model. In the directed case, we make no assumption on

the relationship of 𝑤𝑖𝑗 and 𝑤𝑗𝑖, therefore the directed DeGroot model is an asymmetric

model and thus provides richer dynamics of opinion formation and allows the analysis

of more complex agent behavior.

Given a vector 𝑥(0) of initial agent opinions, the vector of the agents’ opinions at

time 𝑡 is given by

𝑥(𝑡) = 𝐴𝑡𝑥(0) (2.3)

Perhaps the most interesting question in the field of opinion dynamics is whether the

opinions in a particular model converge to a limit in the long run and, if so, how fast

the vector of opinions approaches that limit. Standard results in Markov chain theory

can be applied in the DeGroot model, since 𝐴 is stochastic, to show that it converges

to a stable state, under certain assumptions.

Theorem 2.1. The DeGroot model with 𝑛 agents converges to the unique equilibrium

point
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𝑥* = lim
𝑡→∞

𝑥(𝑡) = lim
𝑡→∞

𝐴𝑡𝑥(0) (2.4)

for any initial vector of opinions 𝑥(0) ∈ [0, 1]𝑛, if and only if the Markov chain with

transition matrix 𝐴 is irreducible and aperiodic.

In our setting these two condition imply that for every agent 𝑖, there exists a time

𝑡0 such that for every time 𝑡 ≥ 𝑡0, 𝑖 is influenced (albeit indirectly) by all other agents.

This is equivalent to the matrix 𝐴𝑡0 having only positive elements. Since

𝑥* = 𝐴𝑥* (2.5)

we will call the limit vector 𝑥*, the Nash equilibrium of the model.

The update rule in the DeGroot model is illustrated in the following examples.

Example 2.1 (The DeGroot Model). Consider an instance of the DeGroot model, with

𝑛 = 3 agents, and a transition matrix

𝐴 =

⎡⎢⎢⎣
0 1/2 1/2

1 0 0

0 1 0

⎤⎥⎥⎦ (2.6)

In this example, the first agent weighs the opinions of the two other agents equally,

the second agent listens only to the first and the third agent listens only to the second.

Figure 2.1: An example of a convergent DeGroot model

If we consider a vector of initial opinions

𝑥(0) =
[︁
0 1 0

]︁𝑇
(2.7)

then applying (2.2), to get the opinions at time 𝑡 = 1, gives us
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𝑥(1) =

⎡⎢⎢⎣
0 1/2 1/2

1 0 0

0 1 0

⎤⎥⎥⎦
⎡⎢⎢⎣
0

1

0

⎤⎥⎥⎦ =

⎡⎢⎢⎣
1/2

0

1

⎤⎥⎥⎦
Then, the agents update their opinions again, and we get

𝑥(2) =

⎡⎢⎢⎣
0 1/2 1/2

1 0 0

0 1 0

⎤⎥⎥⎦
⎡⎢⎢⎣
1/2

0

1

⎤⎥⎥⎦ =

⎡⎢⎢⎣
1/2

1/2

0

⎤⎥⎥⎦
Note that the above Markov chain is irreducible and we can also show that it is

aperiodic. Hence, from Theorem 2.1, it converges to the unique Nash equilibrium.

𝑥* = lim
𝑡→∞

𝐴𝑡𝑥(0) =

⎡⎢⎢⎣
2/5 2/5 1/5

2/5 2/5 1/5

2/5 2/5 1/5

⎤⎥⎥⎦𝑥(0) (2.8)

Therefore, we see that 𝑥* =
[︁
2/5 2/5 2/5

]︁𝑇
, and all agents have converged to the

same opinion.

Example 2.2 (The DeGroot Model - Non-convergence). Consider the previous example,

slightly alterated so that the third agent listens only to the first agent. Then, this instance

of the DeGroot model is not aperiodic, but has a period of 2 instead. Thus, it violates

the premises of Theorem 2.1, and we can show that the agents’ opinions never converge

in this case. Indeed, the transition matrix is

𝐴 =

⎡⎢⎢⎣
0 1/2 1/2

1 0 0

1 0 0

⎤⎥⎥⎦ (2.9)

In this example, the first agent again weighs the opinions of the two other agents

equally, but the other two agents listen only to the first.

We consider the same vector of initial opinions as in the previous example

𝑥(0) =
[︁
0 1 0

]︁𝑇
(2.10)

Since the period of our instance is 2, we can calculate the transition matrix for even

and odd time steps. For any 𝑘 ≥ 1, we have
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Figure 2.2: An example of a non-convergent DeGroot model

𝐴2𝑘 =

⎡⎢⎢⎣
1 0 0

0 1/2 1/2

0 1/2 1/2

⎤⎥⎥⎦ and 𝐴2𝑘+1 =

⎡⎢⎢⎣
0 1/2 1/2

1 0 0

1 0 0

⎤⎥⎥⎦ (2.11)

We observe that the transition matrix alternates between two matrices, at even and

odd times. Thus, the limit lim𝑡→∞𝐴𝑡 does not exist, and the agents’ opinions do not

converge. Intuitively, the agents interchange their opinions at each time step.

A more careful analysis of the DeGroot model will provide information about the

Nash equilibrium as well as the rate of convergence to it. The Perron-Frobenius theorem

[21] states that, since 𝐴 is stochastic, its spectral radius 𝜌(𝐴), i.e. its largest eigenvalue,

is equal to 1. Also, since there exists a 𝑡0 such that 𝐴𝑡0 has only positive elements, 𝜌(𝐴)

is a unique eigenvalue, and it corresponds to the eigenvector 𝑞1 = 1
𝑛1 =

[︀
1
𝑛 ,

1
𝑛 , . . . ,

1
𝑛

]︀
.

Let the eigenvalues of 𝐴 be enumerated in decreasing order of their absolute values,

such that 1 = |𝜆1| > |𝜆2| ≥ . . . ≥ |𝜆𝑛|, and let 𝑄 be the matrix of eigenvectors of

𝐴, where each column of 𝑄 is a eigenvector of 𝐴, normalized to having an 𝐿2 norm

equal to 1. Furthermore, let Λ be the diagonal matrix of the eigenvalues of 𝐴, i.e.

Λ = 𝑑𝑖𝑎𝑔(𝜆1, 𝜆2, . . . , 𝜆𝑛). Since the eigenvectors of 𝐴 are orthonormal, they are linearly

independent, and thus 𝐴 can be factorized as

𝐴 = 𝑄Λ𝑄−1 (2.12)

which gives

𝐴𝑡 = 𝑄Λ𝑡𝑄−1 (2.13)

Since the eigenvectors 𝑞𝑖 of 𝐴 are linearly independent, they span R𝑛, and we can

write
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𝑥𝑇 (0) =

𝑛∑︁
𝑖=1

𝑐𝑖𝑞𝑖 (2.14)

for some set of 𝑐𝑖 ∈ R. Therefore

𝑥(𝑡) = 𝐴𝑡𝑥(0) =
𝑛∑︁
𝑖=1

𝑐𝑖𝜆
𝑡
𝑖𝑞𝑖 = 𝑐1𝑞1 +

𝑛∑︁
𝑖=2

𝑐𝑖𝜆
𝑡
𝑖𝑞𝑖 (2.15)

From the equation above, it is easy to observe that when 𝑡→ ∞, 𝑥* = 𝑐1𝑞1. There-

fore, the unique Nash equilibrium of the DeGroot model is a state in which all agents

reach consensus. In addition, since 𝜆2 dominates all other eigenvalues in the order of

their absolute values, except for 𝜆1 = 1, the rate of convergence to 𝑥* is exponential in

the order of 𝜆2.

2.1.2 The Friedkin - Johnsen Model

The DeGroot model, while deceptively simple, can be used to model any linear be-

havior of the agents. However, it is interesting to develop extensions of the DeGroot

model that simulate real-world social netowrks in a better fashion. One such extension

is the Friedkin-Johnsen (FJ) model, introduced by Friedkin and Johnsen in 1990 [4].

In the FJ model, each agent 𝑖, apart from her expressed opinion 𝑥𝑖, holds a persistent

intrinsic opinion 𝑠𝑖. This internal opinion remains constant even as agent 𝑖 updates her

overall opinion 𝑥𝑖(𝑡) through averaging. At each time step 𝑡, each agent 𝑖 updates her

expressed opinion to

𝑥𝑖(𝑡+ 1) = 𝑤𝑖𝑖𝑠𝑖 +
∑︁
𝑗∈𝒩𝑖
𝑗 ̸=𝑖

𝑤𝑖𝑗𝑥𝑗(𝑡) (2.16)

or, in matrix form

𝑥(𝑡+ 1) = 𝐴𝑥(𝑡) +𝐵𝑠 (2.17)

where the elements in the diagonal of 𝐴 are equal to 0, 𝐵 is a diagonal matrix with

the element at position (𝑖, 𝑖) being equal to 𝑤𝑖𝑖, and 𝑠 is the vector of the agents’ intrinsic

opinions. As with the DeGroot model, we can assume, without loss of generality, that∑︀
𝑗∈𝒩𝑖

𝑤𝑖𝑗 = 1. We require at least one 𝑤𝑖𝑖 ̸= 0 for some agent 𝑖, so that we do not have

an instance of the DeGroot model. If we make the logical assumption that the vector of

initial agent opinions 𝑥(0) = 𝑠, then iterating (2.17) shows that the vector of opinions

at each time 𝑡 ≥ 0 is
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𝑥(𝑡) = 𝐴𝑡𝑠+
𝑡−1∑︁
𝑘=0

𝐴𝑘𝐵𝑠 (2.18)

It is easy to see that the FJ model can be simulated via the DeGroot model. Indeed,

if we consider an instance of the FJ model, we can set 𝑤𝑖𝑖 = 0, and add, for each agent

𝑖, an imaginary new agent 𝑔𝑖 in 𝐺, with the following properties

∙ 𝑥𝑔𝑖(𝑡) = 𝑠𝑖, for every agent 𝑔𝑖 and any time 𝑡.

∙ 𝑤𝑔𝑖𝑔𝑖 = 1.

∙ 𝑤𝑔𝑖𝑘 = 0, for every agent 𝑘 ̸= 𝑔𝑖.

∙ 𝑤𝑗𝑔𝑖 = 0, for every agent 𝑗 ̸= 𝑖.

∙ 𝑤𝑖𝑔𝑖 = 𝑤𝑖𝑖, for every agent 𝑖.

However, the FJ model differs from the DeGroot model in the sense that 𝐴 is now a

substochastic matrix. Therefore, standard Markov chain theory results can be applied

again to show that 𝜌(𝐴) < 1. If we limit our analysis of this model to the undirected

case, where 𝑤𝑖𝑗 = 𝑤𝑗𝑖 for every pair of agents 𝑖 and 𝑗, we can show that the undirected

FJ model admits to a Nash equilibrium.

Theorem 2.2. Consider an instance of the undirected FJ model with 𝑛 agents. Then,

the opinions of the agents converge to the unique Nash equilibrium

𝑥* =
∞∑︁
𝑘=0

𝐴𝑘𝐵𝑠 = (𝐼 −𝐴)−1𝐵𝑠 (2.19)

where 𝐼 is the 𝑛× 𝑛 identity matrix.

Additionally, if we denote an upper bound 𝛾 on the distance from the equilibrium,

at time 𝑡, as ‖𝑥(𝑡)− 𝑥*‖∞ ≤ 𝛾, we can show that the dynamics of (2.17) converge, for

the undirected case, to 𝑥* in 𝒪
(︀ 𝑙𝑛(𝑛/𝛾)
1−𝜌(𝐴)

)︀
time steps [22].

The update rule in the FJ model will become clearer in the following example.

Example 2.3 (The Friedkin-Johnsen Model). Consider an instance of the FJ model,

with 𝑛 = 3 agents, and a transition matrix

𝐴 =

⎡⎢⎢⎣
0 1/4 1/3

1/4 0 1/2

1/3 1/2 0

⎤⎥⎥⎦ (2.20)
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We also have a vector of intrinsic opinions 𝑠 =
[︁
1 1/2 3/4

]︁𝑇
, along with a diagonal

matrix with the weight that each agent has for his intrinsic opinion

𝐵 =

⎡⎢⎢⎣
5/12 0 0

0 1/4 0

0 0 1/6

⎤⎥⎥⎦ (2.21)

We consider the vector of initial opinions 𝑥(0) = 𝑠, and we apply (2.17) to get the

opinions at time 𝑡 = 1

𝑥(1) =

⎡⎢⎢⎣
0 1/4 1/3

1/4 0 1/2

1/3 1/2 0

⎤⎥⎥⎦
⎡⎢⎢⎣

1

1/2

3/4

⎤⎥⎥⎦+

⎡⎢⎢⎣
5/12 0 0

0 1/4 0

0 0 1/6

⎤⎥⎥⎦
⎡⎢⎢⎣

1

1/2

3/4

⎤⎥⎥⎦

=

⎡⎢⎢⎣
3/8

5/8

7/12

⎤⎥⎥⎦+

⎡⎢⎢⎣
5/12

1/8

1/8

⎤⎥⎥⎦ =

⎡⎢⎢⎣
19/24

18/24

17/24

⎤⎥⎥⎦
From Theorem 2.2 we have that this undirected FJ model converges to the unique

Nash equilibrium

𝑥* = (𝐼 −𝐴)−1𝐵𝑠 =

⎡⎢⎢⎣
243
284
103
142
439
568

⎤⎥⎥⎦ (2.22)

It is important to note that, since 𝐵𝑖𝑖 = 0 for all non-stubborn agents by definition,

the Nash equilibrium 𝑥* depends only on the initial opinions of the stubborn agents, and

the initial opinions of the non-stubborn agents eventually vanish and have no effect on

the equilibrium. Furthermore, the presence of stubborn agents indicate that the agents

do not reach a consensus, but the dynamics of (2.17) converge to an equilibrium in which

the opinion of each agent is a convex combination of the initial opinions of the stubborn

agents.

2.2 Non-Linear (Coevolutionary) Models

We will continue our presentation of the main models used in the field of opinion

dynamics with non-linear models. In contrast with the previous models, non-linear

models allow the graph 𝐺𝑡 to change over time. More specifically, the neighborhood

𝒩𝑖 of agent 𝑖 changes at every time 𝑡, as each agent chooses to be influenced by a
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different subset of agents each time. Thus, 𝐸(𝐺𝑡) changes over time and edges are

added, deleted, or have their weights adjusted, to represent the fluctuation of 𝒩𝑖. Non-

linear models are also called coevolutionary models, since the opinions of the agents

and the underlying graph of the social network coevolve, with one affecting the other.

Obviously, coevolutionary models can simulate a wider range of real-world phenomena,

since agents in real social networks constantly update who they are influenced by, and

allow for vastly richer dynamics.

The main difference in our analysis of coevolutionary models is that powerful linear

techniques such as matrix theory, Markov chains and graph theory, used to analyze linear

models, are no longer applicable. More specifically, while most of our notation remains

the same from our analysis of the linear models, it is understood that, as one would

expect, 𝐴(𝑡) is a time-variant matrix in coevolutionary models. This fact makes the

analysis of such interesting models, and the computation of rigorous analytical results

for them, considerably more difficult than the previous ones.

2.2.1 The Hegselmann - Krause Model

Perhaps the most studied and well-known coevolutionary model, due to its generality

and ability to capture almost every notion of agent interaction either directly or via

one of its variants, is the Hegselmann-Krause (HK) model, first introduced in 2002 by

Hegselmann and Krause [5]. In the HK model, we are given a vector of initial opinions

𝑥(0) of the 𝑛 agents, along with their confidence 𝜀 > 0. The confidence of the agents is

used in their computation of their opinion-dependent neighborhood, and is a constant

value, uniform for all agents, that characterizes each instance of the HK model. Since

𝜀 characterizes the neighborhood of every agent, the HK model is also known as the

bounded confidence model. At each time 𝑡 ≥ 1, every agent 𝑖 computes her neighborhood

𝒩𝑖(𝑡, 𝜀) = {𝑗 : |𝑥𝑖(𝑡− 1)− 𝑥𝑗(𝑡− 1)| ≤ 𝜀} (2.23)

and updates her opinion to the average of the opinions in 𝒩𝑖(𝑡, 𝜀)

𝑥𝑖(𝑡) =
∑︁

𝑗∈𝒩𝑖(𝑡,𝜀)

𝑥𝑗(𝑡− 1)

|𝒩𝑖(𝑡, 𝜀)|
(2.24)

or, in matrix form

𝑥(𝑡) = 𝐴(𝑡,𝑥(𝑡))𝑥(𝑡− 1) (2.25)
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In the HK model, each 𝐴(𝑡,𝑥(𝑡)) is a 𝑛 × 𝑛 matrix with the (𝑖, 𝑗) element being

1/|𝒩𝑖(𝑡, 𝜀)| if 𝑗 ∈ 𝒩𝑖(𝑡, 𝜀) and 0 otherwise. Therefore, 𝐴(𝑡,𝑥(𝑡)) corresponds to the

adjacency matrix of 𝐺𝑡 at every time 𝑡. For convenience, in the rest of this thesis, we

will denote 𝐴(𝑡,𝑥(𝑡)) by 𝐴𝑡. Iterating (2.25), we get

𝑥(𝑡) = 𝐴𝑡𝐴𝑡−1 . . .𝐴1𝑥(0) (2.26)

which shows that the opinions of the agents at time 𝑡 is equal to the application of

a series of different linear transformations on the vector of initial agent opinions, with

each such transformation being dependent on the neighborhood of every agent.

Next, we present an example that illustrated the update rule in the HK model.

Example 2.4 (The Hegselmann-Krause Model). Consider an instance of the HK model,

with 𝑛 = 3 agents, where 𝜀 = 1
2 and the initial opinions of the agents are

𝑥(0) =
[︁
0 1/2 1

]︁𝑇
(2.27)

Each agent computes her neighborhood at time 1

𝒩1(1, 𝜀) = {1, 2}

𝒩2(1, 𝜀) = {1, 2, 3}

𝒩3(1, 𝜀) = {2, 3}

and then updates her opinion to the average of the opinions in her neighborhood

𝑥(1) =
[︁
1/4 1/2 3/4

]︁𝑇
(2.28)

Then, we repeat the process for 𝑡 = 2. Note that, now, the agents’ neighborhoods have

changed

𝒩1(2, 𝜀) = {1, 2, 3}

𝒩2(2, 𝜀) = {1, 2, 3}

𝒩3(2, 𝜀) = {1, 2, 3}

Again, each agent updates her opinion to the average of the opinions in her neigh-

borhood
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𝑥(2) =
[︁
1/2 1/2 1/2

]︁𝑇
(2.29)

We see that the agents reached consensus very quickly, with every agent converging

to 𝑥* = 1
2 . Next, we investigate whether converge is guaranteed in the HK model or

whether it was an idiosyncracy of this particular example.

Before we continue investigating the convergence properties of the HK model, we

should note some important properties of the model. We first define the concept of a

split between two agents

Definition 2.3 (Split). Consider two agents 𝑖 and 𝑗. If we have |𝑥𝑖(𝑡−1)−𝑥𝑗(𝑡−1)| ≤ 𝜀

at time 𝑡−1 but |𝑥𝑖(𝑡)−𝑥𝑗(𝑡)| > 𝜀 at time 𝑡, we call this event a split at time 𝑡, because

this leads to 𝑖 /∈ 𝒩𝑗(𝑡+ 1, 𝜀) and 𝑗 /∈ 𝒩𝑖(𝑡+ 1, 𝜀).

We continue with some interesting properties of the HK model.

∙ The dynamics of (2.25) do not change the order of the agents’ opinions. Specifically,

if for two agents 𝑖 and 𝑗 we have 𝑥𝑖(𝑡) ≤ 𝑥𝑗(𝑡), this implies that 𝑥𝑖(𝑡+1) ≤ 𝑥𝑗(𝑡+1).

∙ If a split between two agents occurs at time 𝑡0, this implies that the split between

these agents will remain for all times 𝑡 ≥ 𝑡0. Thus, the agents behave independently

and do not affect each other after 𝑡0. However, this property is not true in higher

dimensions, i.e. when 𝑥𝑖 ∈ R𝑑.

∙ Finally, if for a specific instance of initial agent opinions 𝑥(0) the HK model

converges to a consensus, this implies that |𝑥𝑖(𝑡) − 𝑥𝑗(𝑡)| ≤ 𝜀 for all agents 𝑖, 𝑗

at all times 𝑡 ≥ 0.

There is a considerable amount of research focused on the convergence properties

of the HK model. There are various results that prove convergence of the HK model

under certain assumptions [23–25]. Bhattacharyya et al provided interesting upper and

lower bounds on the convergence rate of the HK model [26]. Specifically, they proved

that the 1-dimensional HK model converges in 𝒪(𝑛3) time and the 𝑑-dimensional HK

model converges in 𝑝𝑜𝑙𝑦(𝑛, 𝑑) time. They also provided a lower bound of Ω(𝑛2) in the

1-dimensional case. The intuition behind their proof of 𝒪(𝑛3) is particularly interest-

ing. Essentially, they prove that for a group of agents where no split occurs, the time

required for them to reach convergence is 𝒪(𝑛2). Since at most 𝑛 splits can occur, the

1-dimensional HK model converges in 𝒪(𝑛3) time. Furthermore, we also know that the

instance of HK model where the agents’ opinions lie on a circle instead of a line also

converges [27].
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In the following chapters we are going to focus on the HK model, introduce variants

and extensions, present certain results on their convergence properties along with the

most important mathematical tools used in the analysis of non-linear models.

2.2.2 The Deffuant - Weisbuch Model

Up until now, all the models we have presented, linear and non-linear, share a common

property in that they are deterministic. The last model we will present here differs

from that scope as it introduces randomness in the process through which the agents’

opinions are updated. In the Deffuant - Weisbuch (DW) model, introduced by Deffuant

and Weisbuch [6, 7], we consider 𝑛 agents with an initial vector of opinions 𝑥(0) ∈ [0, 1]𝑛.

At each time step 𝑡, two randomly chosen agents meet and re-adjust their opinions if

and only if their difference in opinion is smaller in magnitude than a certain threshold

confidence 𝜀. We also consider a convergence parameter 𝜇 ∈ [0, 12 ], and if at time 𝑡 ≥ 1

agents 𝑖 and 𝑗 are chosen to meet, they update their opinions to

𝑥𝑖(𝑡) =

⎧⎨⎩𝑥𝑖(𝑡− 1), 𝑖𝑓 |𝑥𝑖(𝑡− 1)− 𝑥𝑗(𝑡− 1)| > 𝜀

(1− 𝜇)𝑥𝑖(𝑡− 1) + 𝜇𝑥𝑗(𝑡− 1), 𝑖𝑓 |𝑥𝑖(𝑡− 1)− 𝑥𝑗(𝑡− 1)| ≤ 𝜀
(2.30)

𝑥𝑗(𝑡) =

⎧⎨⎩𝑥𝑗(𝑡− 1), 𝑖𝑓 |𝑥𝑖(𝑡− 1)− 𝑥𝑗(𝑡− 1)| > 𝜀

(1− 𝜇)𝑥𝑗(𝑡− 1) + 𝜇𝑥𝑖(𝑡− 1), 𝑖𝑓 |𝑥𝑖(𝑡− 1)− 𝑥𝑗(𝑡− 1)| ≤ 𝜀
(2.31)

Therefore, their updated opinions are a convex combination of their old opinions. In

the DW model, 𝜀 is considered constant both in time and across all the agents.

The exchange of opinions in the DW model can also be represented in matrix form

𝑥(𝑡) =

⎧⎨⎩𝑥(𝑡− 1), 𝑖𝑓 |𝑥𝑖(𝑡− 1)− 𝑥𝑗(𝑡− 1)| > 𝜀

𝐴𝑖𝑗𝑥(𝑡− 1), 𝑖𝑓 |𝑥𝑖(𝑡− 1)− 𝑥𝑗(𝑡− 1)| ≤ 𝜀
(2.32)

where 𝐴𝑖𝑗 is an 𝑛× 𝑛 matrix equal to the identity matrix 𝐼 except for the elements

𝑎𝑖𝑖 = 𝑎𝑗𝑗 = 1 − 𝜇 and 𝑎𝑖𝑗 = 𝑎𝑗𝑖 = 𝜇. It is easy to see that 𝐴𝑖𝑗 = 𝐴𝑇
𝑖𝑗 , thus the DW

model is a symmetric model.

The distinct update rule of the DWmodel can be properly explained with an example.

Example 2.5 (The Deffuant-Weisbuch Model). Consider an instance of the DW model,

with 𝑛 = 3 agents, where 𝜀 = 2
3 , 𝜇 = 1

3 and the initial opinions of the agents are

𝑥(0) =
[︁
0 1/2 1

]︁𝑇
(2.33)
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Let an external entity randomly choose two agents for 𝑡 = 1, say agents 1 and 2. The

random selection follows the uniform distribution over all agents. Then, agents 1 and

2 update their opinions, since their difference is smaller than 𝜀, while agent 3’s opinion

stays the same.

𝑥(1) =
[︁
1/6 1/3 1

]︁𝑇
(2.34)

Next, let 1 and 3 be the chosen agents, and repeat the process for 𝑡 = 2. However,

their difference is larger than 𝜀, therefore no agent changes her opinion at time 𝑡 = 2.

𝑥(2) = 𝑥(1) =
[︁
1/6 1/3 1

]︁𝑇
(2.35)

Finally, if agents 2 and 3 are chosen at time 𝑡 = 3, we get

𝑥(3) =
[︁
1/6 5/9 7/9

]︁𝑇
(2.36)

It is important to note that the DW model differs in many ways from the previous

models. As stated before, it is an inherently random model, in contrast to the previous

models which were deterministic. In addition, while in all previous models all agents

updated their opinions simultaneously at each time step, the DW is a serial model, since

at each time 𝑡 only two agents, say 𝑖 and 𝑗, interact and possibly update their opinions.

The remaining agents 𝑘 ̸= 𝑖, 𝑗 do not update their opinions at time 𝑡. This means that,

while highly unlikely, it is possible for an agent 𝑘 to not be chosen for all times 𝑡 up to

a fixed time 𝑡0, therefore having 𝑥𝑘(𝑡) = 𝑥𝑘(0) ∀𝑡 ≤ 𝑡0. In this case, agent 𝑘 behaves as

a fully-stubborn agent that never updates her opinion.

The DW model is known to converge to an equilibrium 𝑥* [24, 28]. While no signif-

icant upper or lower bound on the convergence time is known, the DW model is known

to converge exponentially fast, even in the asymmetric case, under certain assumptions

[29].



Chapter 3

Variations of the Hegselmann -

Krause model

In this chapter, we focus our attention on the Hegselmann - Krause model. Although

the HK model is considered the basis of all non-linear models, thus making it perhaps

the most important one, and it is definitely an improvement from basic, linear models,

it is very simple in its definition and it cannot properly capture the complex interactions

of real-world social networks. Therefore, developing and studying variations of the HK

model has the potential of producing theoretical results that have greater significance

for real social networks and can be more easily applied. We introduce several interesting

variations of the HK model and present certain important results on their convergence

properties.

3.1 The Network-HK Model

A natural extension of the HK model, and the first variation we will present in this

chapter, is the Network-HK model [30]. It extends the HK model with the addition of an

underlying social network that limits the possible ways opinions are shared between the

agents. Therefore, it introduces the concept of opinion update under limited information.

3.1.1 Definition

In the Network-HK model, along with the vector of initial opinions 𝑥(0) and the

agents’ confidence 𝜀, we are also given a undirected weighted connected graph 𝐺(𝑉,𝐸),

that represents an underlying social network. The graph may change over time, but it

follows a specific set of rules. In particular, 𝐺 and its adjacency matrix 𝐴 must satisfy

the following properties

20
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1. For every agent 𝑖, 𝑤𝑖𝑖 > 0 at all times 𝑡 ≥ 0. This implies that all agents have

self-loops in 𝐺 and the diagonal of 𝐴𝑡 is strictly positive.

2. For every pair of agents 𝑖 and 𝑗, 𝑤𝑖𝑗 > 0 ⇐⇒ 𝑤𝑗𝑖 > 0. This implies that 𝐺 is

bidirectional, in the sense that confidence is mutual for all agents.

3. If we denote the minimum positive weight at time 𝑡 by 𝑤*(𝑡) := 𝑚𝑖𝑛𝑤𝑖𝑗>0 𝑤𝑖𝑗 ,

there exists a fixed 𝛿 > 0, such that 𝑤*(𝑡) > 𝛿 at all times 𝑡 ≥ 0. This implies that

positive weights in 𝐴𝑡 do not converge to zero.

Any graph 𝐺 given in the Network-HK model must satisfy these properties and the

results presented here hold for any such 𝐺. In this model, at every time step 𝑡, each

agent 𝑖 computes her neighborhood

𝒩𝑖(𝐺𝑡, 𝑡, 𝜀) = {𝑗 : {𝑖, 𝑗} ∈ 𝐸 𝑎𝑛𝑑 |𝑥𝑖(𝑡− 1)− 𝑥𝑗(𝑡− 1)| ≤ 𝜀} (3.1)

and updates her opinion to the average of the opinions in 𝒩𝑖(𝐺𝑡, 𝑡, 𝜀), as in the HK

model. Note that (2.26) holds in the Network-HK model as well, albeit with some

modifications on the definition of 𝐴𝑡. Specifically, each 𝐴𝑡 is an 𝑛 × 𝑛 matrix with

the (𝑖, 𝑗) element being 1/|𝒩𝑖(𝐺𝑡, 𝑡, 𝜀)| if 𝑗 ∈ 𝒩𝑖(𝐺𝑡, 𝑡, 𝜀) and 0 otherwise. Furthermore,

since 𝑤𝑖𝑖 > 0 for any agent 𝑖 and any time 𝑡, it is understood that 𝑖 ∈ 𝒩𝑖(𝐺𝑡, 𝑡, 𝜀). Also

note that 𝐴𝑡 corresponds to the adjacency matrix of an undirected, unweighted graph,

but with normalized rows so that each 𝐴𝑡 is stochastic.

3.1.2 Results

Fotakis et al [30], who introduced the Network-HK model, also provide a proof of its

convergence to a stable state. They observe that, if at some point the underlying graph

𝐺 is disconnected, the agents are partitioned into two subsets (𝑆, 𝑉 ∖ 𝑆) such that no

edge {𝑖, 𝑗} between agents 𝑖 ∈ 𝑆 and 𝑗 ∈ 𝑉 ∖ 𝑆 traverses the cut (𝑆, 𝑉 ∖ 𝑆). Therefore,

there is no influence between the agents in 𝑆 and in 𝑉 ∖ 𝑆.

Now, assume there exists a time 𝑡0 such that no edges traverse the cut (𝑆, 𝑉 ∖ 𝑆)
for all times 𝑡 ≥ 𝑡0. It immediately follows that, after 𝑡0, no agent in 𝑆 can ever

again influence an agent in 𝑉 ∖ 𝑆, and vice-versa. Thus, at 𝑡0, our system breaks into

independent subsystems. Intuitively, since at most |𝑉 | − 1 breaks occur, there exists a

finite time 𝑡* after which no breaks occur. Therefore, if we can prove convergence for

the Network-HK model, given that no breaks occur, this would imply convergence for

each of our subsystems. Therefore, the overall Network-HK model will converge as well.

We start by defining the concept of a weakly connected set of agents, that properly

captures the concept of a set of agents where no breaks occur, for any time 𝑡.
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Definition 3.1 (Weakly Connected Set). We say that a set of agents 𝑆 ⊆ 𝑉 is weakly

connected if for any 𝑆′ ⊂ 𝑆 such that 𝑆′ ̸= ∅ and any 𝑡0 ∈ N, there is a round 𝑡 ≥ 𝑡0 so

that 𝐺𝑡 includes at least one edge connecting an agent in 𝑆′ to some agent in 𝑆 ∖ 𝑆′.

Our definition of weak connectivity attempts to capture the notion that all agents

in a weakly connected set influence each other with their opinions. Observe that it is

equivalent to the negaiton of the property that a break occurs at some time step 𝑡0. If

the set of agents 𝑉 is not weakly connected, it can be uniquely partitioned into weakly

connected components, as the following lemma demonstrates.

Lemma 3.2. Given a graph 𝐺(𝑉,𝐸), there is a unique partition of 𝑉 into weakly con-

nected components 𝑉1, 𝑉2, . . . , 𝑉𝑚.

Proof. Consider an agent 𝑖 ∈ 𝑉 and let 𝑉1 be a maximal weakly connected set that

includes 𝑖. We assume that for any time step 𝑡1 there exists a time step 𝑡2 ≥ 𝑡1 such

that there exists an edge in 𝐺𝑡2 that connects an agent in 𝑉1 to an agent in 𝑉 ∖ 𝑉1.
Since 𝑉 ∖ 𝑉1 contains a finite number of agents, this implies the existence of an agent

𝑗 ∈ 𝑉 ∖ 𝑉1 such that for any time step 𝑡1 there exists a time step 𝑡2 ≥ 𝑡1 where 𝐺𝑡2

contains an edge connecting an agent in 𝑉1 to 𝑗. This means that 𝑉1∪{𝑗} is also weakly

connected, which contradicts the maximality of 𝑉1. Therefore, our claim was wrong and

there exists a time step 𝑡0 such that for all time steps 𝑡 ≥ 𝑡0, there is no edge in 𝐺𝑡 that

connects any agent in 𝑉1 to any agent in 𝑉 ∖ 𝑉1.

Consider now an agent 𝑖′ ∈ 𝑉 ∖ 𝑉1. Following the previous thought process, let

𝑉2 be a maximal weakly connected set that includes 𝑖′. It is easy to observe that

𝑉1 ∩ 𝑉2 = ∅, since, if we consider an agent 𝑗′ ∈ 𝑉1 ∩ 𝑉2, we get that 𝑉1 ∪ {𝑗′} is also

weakly connected, which again contradicts the maximality of 𝑉1. Therefore, 𝑉1 is the

unique maximal weakly connected set that includes 𝑖. We continue inductively, applying

the same argument to 𝑉 ∖ 𝑉1, to obtain a unique partition of 𝑉 into weakly connected

components 𝑉1, 𝑉2, . . . , 𝑉𝑚.

From Lemma 3.2, it is understood that we can focus our analysis of the Network-HK

model in the case where 𝑉 is a weakly connected set of agents. Indeed, utilizing the

notion of the coefficient of ergodicity of a matrix, we can prove that the agents of a

weakly connected set reach consensus. First, we define the coefficient of ergodicity of a

stochastic, square matrix.

Definition 3.3 (Coefficient of Ergodicity). The coefficient of ergodicity of a stochastic,

𝑛×𝑛 matrix 𝐴, denoted by 𝜏(𝐴), is defined as 𝜏(𝐴) := 1
2 𝑚𝑎𝑥𝑖,𝑗‖𝐴

𝑇 (𝑒𝑖 − 𝑒𝑗)‖1, where
𝑒𝑖 is the vector with 1 in coordinate 𝑖 and 0 in all other coordinates.
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Before we proceed, we will present some important properties of the coefficient of

ergodicity. Let 𝐴 and 𝐵 be stochastic matrices. Then

i. 𝜏(𝐴) ≤ 1.

ii. 𝜏(𝐴𝐵) ≤ 𝜏(𝐴)𝜏(𝐵).

iii. 𝜏(𝐴) = 0 ⇐⇒ 𝑟𝑎𝑛𝑘(𝐴) = 1.

iv. ∀𝑖, 𝑗 𝑎𝑖𝑗 > 0 =⇒ 𝜏(𝐴) < 1.

Now that we have defined the necessary concepts needed for our proof, we can proceed

with the following lemma, which proves that a weakly connected set of agents reaches

consensus.

Lemma 3.4. Let (𝐺(𝑉,𝐸), 𝜀,𝑥(0)) be an instance of the Network-HK model, where 𝑉

is weakly connected. Then, all agents converge to a single opinion 𝑥*.

Proof. To prove the lemma, we will show that there exists a time step 𝑡0 ≥ 0, such that

the matrix 𝐶𝑡0
1 = 𝐴𝑡0𝐴𝑡0−1 . . .𝐴1 has 𝜏(𝐶𝑡0

1 ) ≤ 𝜀/2. We also have, from (2.26) that

𝑥(𝑡0) = 𝐶𝑡0
1 𝑥(0). Combining the two equations above, we get that for all agents 𝑖 and 𝑗

|𝑥𝑖(𝑡0)− 𝑥𝑗(𝑡0)| = |(𝑒𝑖𝐶𝑡0
1 − 𝑒𝑗𝐶

𝑡0
1 )𝑥(0)| ≤ ‖𝑒𝑖𝐶𝑡0

1 − 𝑒𝑗𝐶
𝑡0
1 ‖1 (3.2)

where 𝑒𝑖𝐶
𝑡0
1 is equal to the 𝑖-th row of matrix 𝐶𝑡0

1 , and the last inequality holds due

to 𝑥(0) ∈ [0, 1]𝑛. Therefore we have

|𝑥𝑖(𝑡0)− 𝑥𝑗(𝑡0)| ≤ ‖𝑒𝑖𝐶𝑡0
1 − 𝑒𝑗𝐶

𝑡0
1 ‖1 ≤ 2𝜏(𝐶𝑡0

1 ) ≤ 𝜀 (3.3)

We see that at time 𝑡0, all agents are within distance 𝜀, thus at any time 𝑡 ≥ 𝑡0,

all agents compute the average of all the opinions in their social neighborhood, which

includes their opinion. This implies that 𝐴𝑡 = 𝐴𝑡0 for any time 𝑡 ≥ 𝑡0, which means that

𝐴 is a constant matrix after 𝑡0. We can easily see that this is essentialy an instance of the

undirected DeGroot model, where 𝑤𝑖𝑖 > 0 for any agent 𝑖. From 𝑉 ’s weak connectivity,

we get that the process defined by 𝐴𝑡0 is irreducible and, since 𝑤𝑖𝑖 > 0 for any agent 𝑖,

we get that the process is aperiodic. Therefore, by [1], all agents converge to a single

opinion 𝑥*.

It remains to prove for any 𝛿 > 0 the existence of a time step 𝑡0 ≥ 0, such that

the matrix 𝐶𝑡0
1 = 𝐴𝑡0𝐴𝑡0−1 . . .𝐴1 has 𝜏(𝐶𝑡0

1 ) ≤ 𝛿. Then, setting 𝛿 = 𝜀/2, we get the

necessary requirements for (3.3) to hold.
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First of all, we prove that the weak connectivity of 𝑉 implies that for any time

step 𝑡, there exists a corresponding time step 𝑙(𝑡) ≥ 𝑡, such that the matrix 𝐶
𝑙(𝑡)
𝑡 =

𝐴𝑙(𝑡)𝐴𝑙(𝑡)−1 . . .𝐴𝑡 has only positive elements. Thus, from property (iv) of the coefficient

of ergodicity, we get 𝜏(𝐶
𝑙(𝑡)
𝑡 ) < 1. To prove this claim, we note that the (𝑖, 𝑗) element of

𝐶
𝑙(𝑡)
𝑡 is positive if and only if there is a time-respecting walk (𝑞0 = 𝑖, 𝑞1, . . . , 𝑞𝑚−1, 𝑞𝑚 = 𝑗)

from agent 𝑖 to agent 𝑗 such that

∙ Edge {𝑖, 𝑞1} exists in 𝐺𝑡′ for some 𝑡′ ≥ 𝑡.

∙ For every index 1 ≤ 𝑘 ≤ 𝑚−1, if the edge {𝑞𝑘−1, 𝑞𝑘} exists in 𝐺𝑡′ for some 𝑡′, then

the edge {𝑞𝑘, 𝑞𝑘+1} exists in 𝐺𝑡′′ for some 𝑡′′ > 𝑡′.

Since each 𝐴𝑡 has positive diagonal elements, the walk can wait at each intermediate

agent until the next edge appears. The existence of such a walk between all pairs of

agents in 𝑉 follows directly from the definition of weak connectivity.

We now know that for any time 𝑡 there is a corresponding time 𝑙(𝑡) such that

𝜏(𝐶
𝑙(𝑡)
𝑡 ) < 1. However, this is not enough to prove our lemma. We also need to

show that there is a fixed 𝜂 > 0 such that 𝜏(𝐶
𝑙(𝑡)
𝑡 ) ≤ 1 − 𝜂. Then, concatenating 𝑝

non-overlapping sequences 𝐴𝑡, . . . ,𝐴𝑙(𝑡) and utilizing property (ii) of the coefficient of

ergodicity, we get a sequence 𝐴1, . . . ,𝐴𝑡0 such that 𝜏(𝐴1 . . .𝐴𝑡0) ≤ (1− 𝜂)𝑝. For an

appropriately large 𝑝, we get 𝜏(𝐴1 . . .𝐴𝑡0) ≤ 𝛿 for any 𝛿 > 0.

To show that 𝜏(𝐶
𝑙(𝑡)
𝑡 ) ≤ 1 − 𝜂, we note that there exist at most 𝑛2 matrices in the

sequence 𝐴𝑡, . . . ,𝐴𝑙(𝑡) that strictly increase the number of agents reachable from some

other agent by time-respecting walks, equal to the number of all possible pairs of 𝑛

agents in 𝐺. Therefore, 𝜏(𝐴𝑡, . . . ,𝐴𝑙(𝑡)) is bounded by the product of the coefficients of

ergodicity of these specific matrices. Since the number of these matrices is at most 𝑛2

and the number of different matrices 𝐴𝑡 is finite and equal to the number of induced

subgraphs of 𝐺, i.e. all the possible subsets of 𝑉 along with their respective edges, there

exists a fixed 𝜂 > 0 such that 𝜏(𝐴𝑡, . . . ,𝐴𝑙(𝑡)) ≤ 1 − 𝜂 and our proof of Lemma 3.4 is

complete.

Intuitively, a weakly connected set of agents reaches consensus because all agents

influence (directly or indirectly) each other with their opinions, for all times 𝑡. Therefore,

the maximum distance between the agents’ opinions decreases as time goes by, leading

all agents to converge to the same opinion. It should be obvious that Lemmas 3.2 and

3.4 guarantee the convergence of the Network-HK model.

Theorem 3.5. The Network-HK model converges to a stable state.
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Proof. From Lemma 3.2, it follows that there exists a time 𝑡0, after which the agents

in different components do not interact and exchange their opinions. Therefore, we

consider each weakly connected component as a separate and independent instance of

the Network-HK model. From Lemma 3.4, the agents in each of these instances reach

consensus, thus the Network-HK model converges to a stable state.

The proof can be generalized in the 𝑑-dimensional case, where each agent 𝑖 holds a

𝑑-dimensional opinion 𝑥𝑖(𝑡) ∈ [0, 1]𝑑, with the only change in the proof being that we

require 𝜏(𝐶) ≤ 𝜀/(2
√
𝑑) in (3.3).

While we have proven the convergence of the Network-HK model, no upper or lower

bounds on the convergence time are known. The existence of such bounds remains an

interesting open question in the field of opinion dynamics.

3.2 The Random-HK Model

A second variation, that departs from the HK model’s deterministic nature, is the

Random-HK model [30]. It is an extension the HK model that, like the Network-HK

model, considers the interaction of agents under limited information on the opinions of

their neighborhood. However, instead of representing the concept of limited information

via an underlying graph, it introduces randomness in the computation of the agents’

neighborhoods as a way to limit the spread of information in the network, with each

agent learning only a random subset of opinions of the agents in his neighborhood.

3.2.1 Definition

In the Random-HK model, along with the vector of initial opinions 𝑥(0) and the

agents’ confidence 𝜀, we are also given a sampling parameter 𝑘. At any time step 𝑡 ≥ 1,

each agent 𝑖 samples a random subset 𝐾𝑖 of 𝑘 agents, from all agents, with replacement.

Afterwards, agent 𝑖 computes her neighborhood

𝒩𝑖(𝐾𝑖, 𝑡, 𝜀) = {𝑗 : 𝑗 ∈ 𝐾𝑖 𝑎𝑛𝑑 |𝑥𝑖(𝑡− 1)− 𝑥𝑗(𝑡− 1)| ≤ 𝜀} (3.4)

and updates her opinion to the average of the opinions in 𝒩𝑖(𝐾𝑖, 𝑡, 𝜀), as in the HK

model. Note that, as with the Network-HK model, (2.26) holds in the Random-HK

model as well, with each 𝐴𝑡 being an 𝑛 × 𝑛 matrix with the (𝑖, 𝑗) element equal to

1/|𝒩𝑖(𝐾𝑖, 𝑡, 𝜀)| if 𝑗 ∈ 𝒩𝑖(𝐾𝑖, 𝑡, 𝜀) and 0 otherwise. Again, we require 𝑖 ∈ 𝒩𝑖(𝐾𝑖, 𝑡, 𝜀) for

every agent 𝑖. Also note that 𝐴𝑡 corresponds to the adjacency matrix of a directed,

unweighted graph, but with normalized rows so that each 𝐴𝑡 is stochastic.
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3.2.2 Results

The Random-HK model with sampling parameter 𝑘 converges to a stable state, as is

shown by Fotakis et al [30], who introduced the Random-HK model as well. The idea

behind their proof is essentially the same as their proof of convergence in the Network-

HK model, where some notions are modified to include the inherent randomness of this

model. Since the two proofs are quite similar, we will not prove the convergence of the

Random-HK model in this thesis, but instead we will define the concepts necessary to

the proof in [30] and also state without proof the lemmas that point to the convergence

of the Random-HK model. We will begin by defining the notion of an 𝜀-connected set of

agents that is directly equivalent to the weakly connected set of the Network-HK model.

Definition 3.6 (𝜀-Connected Set). Let 𝑆1, 𝑆2 be two disjoint sets of agents. Then,

𝑑𝑡(𝑆1, 𝑆2) = 𝑚𝑖𝑛𝑖∈𝑆1,𝑗∈𝑆2 |𝑥𝑖(𝑡)− 𝑥𝑗(𝑡)| denotes their distance at time 𝑡. We say that

a set of agents 𝑆 ⊆ 𝑉 is 𝜀-connected at time 𝑡, if for any 𝑆′ ⊂ 𝑆 such that 𝑆′ ̸= ∅,
𝑑𝑡(𝑆′, 𝑆 ∖ 𝑆′) ≤ 𝜀.

Intuitively, 𝜀-connectivity in a set 𝑆 implies the existence of a path (𝑞0 = 𝑖, 𝑞1, . . . ,

𝑞𝑚−1, 𝑞𝑚 = 𝑗) between any pair of agents 𝑖, 𝑗 ∈ 𝑆, such that for each 0 ≤ 𝑘 ≤ 𝑚− 1, we

have |𝑥𝑞𝑘(𝑡)− 𝑥𝑞𝑘+1
(𝑡)| ≤ 𝜀. We recall our definition of a split between two agents (2.3),

and we extend it to define a break of a set of agents.

Definition 3.7 (Break). We say that a set of agents 𝑆 breaks at time 𝑡, if 𝑆 is 𝜀-

connected at time 𝑡− 1 and it is not 𝜀-connected at time 𝑡.

It is important to note that, as with the HK model, once a set of agents 𝑆 breaks at

time 𝑡0 into subsets 𝑆′ and 𝑆 ∖ 𝑆′, the agents in the two subsets no longer communicate

and interact with one another, and the subsets behave as independent subinstances of

the Random-HK model for all times 𝑡 ≥ 𝑡0. This leads us to the first important lemma

necessary to prove the convergence of the Random-HK model, that is equivalent to

Lemma 3.2 of the Network-HK model.

Lemma 3.8. Given a set of agents 𝑆 in the Random-HK model, there is a unique

partition of 𝑆 into 𝜀-connected subsets 𝑆1, 𝑆2, . . . , 𝑆𝑚.

If we denote by 𝑅𝑡2𝑡1 the event that a break occurs between times 𝑡1 and 𝑡2, and by

𝑅̄𝑡2𝑡1 the event that no breaks occurs between times 𝑡1 and 𝑡2 respectively, we can state

the following lemma, equivalent to Lemma 3.4 of the Network-HK model, which shows

that in an 𝜀-connected set, all agents converge to a single opinion with probability that

tends to 1.
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Lemma 3.9. Let (𝑘, 𝜀,𝑥(0)) be an instance of the Random-HK model. For any 𝛾, 𝛿 > 0

and any time step 𝑡1 ≥ 0, there is a time step 𝑡2 > 𝑡1 such that Pr[𝑅̄𝑡2𝑡1 ] > 0 and

Pr
[︁
∀𝑖, 𝑗 |𝑥𝑖(𝑡2)− 𝑥𝑗(𝑡2)| ≤ 𝛾 | 𝑅̄𝑡2𝑡1

]︁
≥ 1− 𝛿 (3.5)

Intuitively, the above lemma implies that all 𝜀-connected components will have been

formed by time 𝑛𝑡2, and that each 𝜀-connected component reaches consensus separately.

Each 𝜀-connected component converges for the same reasons as in the Network-HK

model, specifically that all agents influence each other with their opinions, for all times

𝑡. Combining Lemmas 3.8 and 3.9, we get that the Random-HK model converges asymp-

totically to a stable state, with probability that tends to 1.

Theorem 3.10. The Random-HK model converges to a stable state.

3.3 The Inertial-HK Model

Another interesting extension of the HK model, which considers the case where agents

can move arbitrarily close to the weighted average in their neighborhood at each time

step, is the Inertial-HK model [31]. This model was introduced to capture the addition

of fully-stubborn agents in the HK model. The convergence properties of this model

were one of the most significant open questions in the field of opinion dynamics, with

extensive simulations pointing to the model’s convergence [28, 32]. However, a proof

remained elusive for a long time and the efforts of obtaining one led to the innovative

energetic approach being utilized for the first time, thus providing us with another

powerful mathematical tool for the analysis of coevolutionary models.

3.3.1 Definition

In the Inertial-HK model, instead of being required to move to the mass center of

its neighbors at each step, each agent can move towards it by any fraction of length.

While all results presented in this section hold for the 𝑑-dimensional case, with agent

𝑖’s opinion being 𝑥𝑖 ∈ R𝑑, we will focus our analysis on the 1-dimensional case due to

its simplicity. We also set 𝜀 = 1 in this model, since we can always normalize all agents’

opinions by 𝜀, and this simplifies the model’s analysis. Therefore, in the Inertial-HK

model we have

𝒩𝑖(𝑡) = {𝑗 : |𝑥𝑖(𝑡− 1)− 𝑥𝑗(𝑡− 1)| ≤ 1} (3.6)
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As in the previous models, we see that 𝑖 ∈ 𝒩𝑖. At every time step, each agent 𝑖

computes her neighborhood and moves to a point that is a convex combination of her

previous opinion and the average of the opinions in 𝒩𝑖

𝑥𝑖(𝑡+ 1) = (1− 𝜆𝑖(𝑡))𝑥𝑖(𝑡) +
𝜆𝑖(𝑡)

|𝒩𝑖(𝑡)|
∑︁

𝑗∈𝒩𝑖(𝑡)

𝑥𝑗(𝑡) (3.7)

We call 𝜆𝑖(𝑡) ∈ [0, 1] the inertia, which gives the model its name. We see that

𝜆𝑖(𝑡) need not have the same value for all the agents, and is also time-variant. Setting

𝜆𝑖(𝑡) = 0 for all times 𝑡 turns agent 𝑖 into a fully-stubborn agent. Also note that we can

retrieve the original HK model by setting 𝜆𝑖(𝑡) = 1 for all agents and all times.

3.3.2 Results

The Inertial-HK model was introduced by Chazelle and Wang [31] in order to prove

the convergence of the HK model with fully-stubborn agents, where they utilized the

concept of the kinetic s-energy of the system, presented in detail in Section 4.5. The

kinetic energy of a system was introduced as a generating function for studying averaging

processes in dynamic networks [33], and is defined in the 𝑑-dimensional case as

𝐾(𝑠) =
∑︁
𝑡≥0

𝑛∑︁
𝑖=1

‖𝑥𝑖(𝑡+ 1)− 𝑥𝑖(𝑡)‖𝑠2 (3.8)

We will provide an upper bound on the kinetic 𝑠-energy of the Inertial-HK model for

𝑠 = 2 in the 1-dimensional case, and we will utilize this result to prove the asymptotic

convergence of the HK model with the addition of fully-stubborn agents.

Intuitively, the bound on the kinetic 2-energy of the Inertial-HK model follows from

the fact that 𝐾(2) is a quadratic and convex function of 𝑥 and, as agents move towards

each other and form clusters, they tend to move less and 𝐾(2) converges asymptotically

to its minimum value. If, afterwards, we constrict the possible values of inertia to the

binary setting 𝜆𝑖(𝑡) ∈ {0, 1}, we get a variation of the HK model with the addition of

fully-stubborn agents. The upper bound on 𝐾(2) can be used here to proof the existence

of a time 𝑡𝛿, for any arbitrarily small 𝛿 > 0, such that for all 𝑡 ≥ 𝑡𝛿 no agent moves

by more than 𝛿. Then, we attempt to show that, after a specific time step, agents are

endowed with fixed neighborhoods, thus we essentially have an instance of the DeGroot

model (Section 2.1.1). The reason behind this is that, since agents are either non-

stubborn or fully-stubborn, they cannot oscillate in and out of neighborhoods forever.

Such an alternation for an agent 𝑖 would imply the existence of another agent 𝑗 who also

oscillates between neighborhoods and causes 𝑖’s periodic movement. But then, a third



Chapter 3. Variations of the Hegselmann - Krause model 29

agent has to be the cause of 𝑗’s periodic movement. Inductively, since our set of agents

is finite and the opinions are in 1 dimension, we arrive at a contradiction. In the higher-

dimensional case, this last proof is quite different and consists of showing that all agents

are either “trapped” by certain fully-stubborn agents and converge asymptotically to a

convex combination of their opinions, or become fully-stubborn agents themselves.

Lemma 3.11. Consider an Inertial-HK system with 𝑛 agents, whose inertias are uni-

formly bounded from above by 𝜆*. Then, the kinetic 𝑠-energy of this system satisfies

𝐾(2) ≤ 𝜆*𝑛
2/4.

Proof. In order to prove the above lemma, we will define a function 𝐶𝑖(𝑡) for each agent

𝑖 that captures how much each agent moves in the system. Intuitively, we can imagine

𝐶𝑖(𝑡) being the amount of “money” agent 𝑖 haves at time 𝑡. We assign each agent with

a certain amount of money at the beginning (𝑡 = 0), and we introduce a protocol for

spending and exchanging it with other agents as time progresses. If we knew ahead

of time the total contribution of agent 𝑖 to the kinetic 2-energy, we could simply set

𝐶𝑖(0) to that amount and let the agent “pay” for her contribution from her own pocket.

However, this information is not known beforehand, so we take an initial guess and set

up an exchange protocol so that no agent runs out of money. By giving money to their

neighbors in a judicious manner, we show how each agent remains in a position to pay for

her share of the kinetic 2-energy at each step. The proof is a message-passing protocol

that treats 𝐶𝑖(𝑡) as a distributed Lyapunov function, and simulates its update. In the

beginning, we assign agent 𝑖

𝐶𝑖(0) =
𝑛∑︁
𝑗=1

min
{︁
|𝑥𝑖(0)− 𝑥𝑗(0)|2, 1

}︁
(3.9)

units of money. Intuitively, agent 𝑖 will have to spend an amount of money each

turn that represents how much he moved at that time step. Furthermore, agent 𝑖 gives

money to agent 𝑗 as a way to pay for the cost that 𝑗 incurs from the fact that 𝑖 moved

from his previous position. Since 𝑗 also moves, concurrently with 𝑖, the inverse exchange

from 𝑗 to 𝑖 happens as well. In addition, because agents move towards each other and

form clusters, once 𝑖 exits the neighborhood of some 𝑗, he stops exchanging money with

that agent. Therefore, as clusters are formed, agents move less, interact less and the

flow of money decreases. That is the idea behind this approach to proving that 𝐾(2) is

bounded.

Before we proceed, we will define some useful quantities that will simplify the equa-

tions below. For any two agents 𝑖 and 𝑗 we have

i. Δ𝑖 = 𝑥𝑖(𝑡+ 1)− 𝑥𝑖(𝑡)
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ii. 𝑑𝑖𝑗 = 𝑥𝑖(𝑡)− 𝑥𝑗(𝑡)

iii. 𝑑′𝑖𝑗 = 𝑥𝑖(𝑡+ 1)− 𝑥𝑗(𝑡+ 1)

Our message-passing protocol consists of two rules, applied to every agent 𝑖 at any

time step 𝑡 ≥ 0

∙ Agent 𝑖 spends (Δ𝑖 +Δ𝑗)
2 units of money for every 𝑗 ∈ 𝒩𝑖(𝑡), at each time 𝑡, and

gives to agent 𝑗 an amount equal to 2(𝑑𝑖𝑗 −Δ𝑗)Δ𝑗 . Note that, since 𝑖 ∈ 𝒩𝑖, agent

𝑖 spends at least 4Δ𝑖
2 units of money at each time 𝑡.

∙ For every agent 𝑗 that becomes, or ceases to be, a neighbor of 𝑖 at time 𝑡+1, agent

𝑖 spends |𝑑′𝑖𝑗
2 − 1|.

Before we continue, we will first simply the notation. For the remainder of this proof,

we will denote by 𝒩𝑖 agent 𝑖’s neighborhood at time 𝑡, since we will focus at two specific

times 𝑡 and 𝑡+ 1. For the same reasons, we will denote 𝜆𝑖(𝑡) by 𝜆𝑖. We will also make

a distinction in the neighborhood of agent 𝑖, denoting by 𝒩 𝑖𝑛
𝑖 the set of agents that are

neighbors of 𝑖 at time 𝑡 + 1, but not at time 𝑡, and by 𝒩 𝑜𝑢𝑡
𝑖 the set of agents that are

neighbors of 𝑖 at time 𝑡, but not at time 𝑡 + 1. Focusing on a single agent, we analyze

the cash flow at time 𝑡

𝐶𝑖(𝑡+ 1)− 𝐶𝑖(𝑡) =−
∑︁
𝑗∈𝒩𝑖

(Δ𝑖 +Δ𝑗)
2 + 2

∑︁
𝑗∈𝒩𝑖

(𝑑𝑗𝑖 −Δ𝑖)Δ𝑖

− 2
∑︁
𝑗∈𝒩𝑖

(𝑑𝑖𝑗 −Δ𝑗)Δ𝑗 −
∑︁

𝑗∈𝒩 𝑖𝑛
𝑖 ∪𝒩 𝑜𝑢𝑡

𝑖

|𝑑′𝑖𝑗
2 − 1| (3.10)

We also have that

(𝑑𝑗𝑖 −Δ𝑖)Δ𝑖 − (𝑑𝑖𝑗 −Δ𝑗)Δ𝑗 = 𝑑𝑗𝑖Δ𝑖 −Δ2
𝑖 − 𝑑𝑖𝑗Δ𝑗 +Δ2

𝑗

which, since 𝑑𝑗𝑖 = −𝑑𝑖𝑗 , is equal to

− 𝑑𝑖𝑗(Δ𝑖 +Δ𝑗) + Δ2
𝑗 −Δ2

𝑖 = 𝑑𝑖𝑗(Δ𝑖 −Δ𝑗)− 2𝑑𝑖𝑗Δ𝑖 +Δ2
𝑗 −Δ2

𝑖 (3.11)

Combining (3.10) and (3.11), we get
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𝐶𝑖(𝑡+ 1)− 𝐶𝑖(𝑡) =
∑︁
𝑗∈𝒩𝑖

{︁
2𝑑𝑖𝑗(Δ𝑖 −Δ𝑗)− 4𝑑𝑖𝑗Δ𝑖 − (Δ2

𝑖 + 2Δ𝑖Δ𝑗 +Δ2
𝑗 )

+2Δ2
𝑗 − 2Δ2

𝑖

}︁
−

∑︁
𝑗∈𝒩 𝑖𝑛

𝑖 ∪𝒩 𝑜𝑢𝑡
𝑖

|𝑑′𝑖𝑗
2 − 1|

=
∑︁
𝑗∈𝒩𝑖

{︁
2𝑑𝑖𝑗(Δ𝑖 −Δ𝑗)− 4𝑑𝑖𝑗Δ𝑖 + (Δ2

𝑖 − 2Δ𝑖Δ𝑗 +Δ2
𝑗 )

−4Δ2
𝑖

}︁
−

∑︁
𝑗∈𝒩 𝑖𝑛

𝑖 ∪𝒩 𝑜𝑢𝑡
𝑖

|𝑑′𝑖𝑗
2 − 1| (3.12)

Furthermore, from (3.7) we have

Δ𝑖 = 𝜆𝑖
∑︁
𝑗∈𝒩𝑖

𝑥𝑗(𝑡)

|𝒩𝑖|
− 𝜆𝑖𝑥𝑖(𝑡)

which gives us

∑︁
𝑗∈𝒩𝑖

𝑑𝑖𝑗 = −𝜆−1
𝑖 |𝒩𝑖|Δ𝑖 (3.13)

Combining now (3.12) and (3.13), we get

𝐶𝑖(𝑡+ 1)− 𝐶𝑖(𝑡) =
∑︁
𝑗∈𝒩𝑖

{︁
2𝑑𝑖𝑗(Δ𝑖 −Δ𝑗)− 4𝑑𝑖𝑗Δ𝑖 + (Δ𝑖 −Δ𝑗)

2
}︁
− 4|𝒩𝑖|Δ2

𝑖

−
∑︁

𝑗∈𝒩 𝑖𝑛
𝑖 ∪𝒩 𝑜𝑢𝑡

𝑖

|𝑑′𝑖𝑗
2 − 1|

=
∑︁
𝑗∈𝒩𝑖

{︁
2𝑑𝑖𝑗(Δ𝑖 −Δ𝑗) + (Δ𝑖 −Δ𝑗)

2
}︁
− 4(𝜆−1

𝑖 − 1)|𝒩𝑖|Δ2
𝑖

−
∑︁

𝑗∈𝒩 𝑖𝑛
𝑖 ∪𝒩 𝑜𝑢𝑡

𝑖

|𝑑′𝑖𝑗
2 − 1| (3.14)

Dividing by 𝜆𝑖 in (3.13) is possible, due to 𝜆𝑖 = 0 implying Δ𝑖 = 0. Therefore, in this

case, 𝑖 is a fully-stubborn agent and 𝐶𝑖(𝑡 + 1) − 𝐶𝑖(𝑡) = 0 for all times 𝑡 which means

that agent 𝑖 never runs out of money. Since 𝑑′𝑖𝑗 − 𝑑𝑖𝑗 = Δ𝑖 −Δ𝑗 , we have

2𝑑𝑖𝑗(Δ𝑖 −Δ𝑗) + (Δ𝑖 −Δ𝑗)
2 = 2𝑑𝑖𝑗𝑑

′
𝑖𝑗 − 2𝑑2𝑖𝑗 + (𝑑′𝑖𝑗 − 𝑑𝑖𝑗)

2 = 𝑑′2𝑖𝑗 − 𝑑2𝑖𝑗 (3.15)

Thus, from (3.14) and (3.15), we get
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𝐶𝑖(𝑡+ 1)− 𝐶𝑖(𝑡) =∑︁
𝑗∈𝒩𝑖

{︁
𝑑′2𝑖𝑗 − 𝑑2𝑖𝑗

}︁
−

∑︁
𝑗∈𝒩 𝑖𝑛

𝑖 ∪𝒩 𝑜𝑢𝑡
𝑖

|𝑑′𝑖𝑗
2 − 1| − 4(𝜆−1

𝑖 − 1)|𝒩𝑖|Δ2
𝑖 (3.16)

The first two sums in the equation above can be combined, if we note that

∙ For all 𝑗 ∈ 𝒩 𝑜𝑢𝑡
𝑖 , we have 𝑑𝑖𝑗 ≤ 1 and 𝑑′𝑖𝑗 > 1. Therefore 𝑑′2𝑖𝑗 − 𝑑2𝑖𝑗 − |𝑑′𝑖𝑗

2 − 1| =
1− 𝑑2𝑖𝑗 .

∙ For all 𝑗 ∈ 𝒩 𝑖𝑛
𝑖 , we have 𝑑𝑖𝑗 > 1 and 𝑑′𝑖𝑗 ≤ 1. Therefore these agents only

participate in the seccond summand, with their contribution being −|𝑑′2𝑖𝑗 − 1| =
𝑑′2𝑖𝑗 − 1.

∙ For all other agents 𝑗 ∈ 𝒩𝑖(𝑡)∩𝒩𝑖(𝑡+ 1), we have 𝑑𝑖𝑗 ≤ 1 and 𝑑′𝑖𝑗 ≤ 1. Therefore,

these agents only participate in the first summand, with their contribution being

𝑑′2𝑖𝑗 − 𝑑2𝑖𝑗 .

Thus, (3.16) can be written as

𝐶𝑖(𝑡+ 1)− 𝐶𝑖(𝑡) =
𝑛∑︁
𝑗=1

min
{︀
𝑑′2𝑖𝑗 , 1

}︀
−

𝑛∑︁
𝑗=1

min
{︀
𝑑2𝑖𝑗 , 1

}︀
− 4(𝜆−1

𝑖 − 1)|𝒩𝑖|Δ2
𝑖 (3.17)

Iterating the above equation, and using the fact that 𝜆𝑖 ≤ 𝜆*, it follows that

𝐶𝑖(𝑡) ≥
𝑛∑︁
𝑗=1

min
{︀
𝑑2𝑖𝑗 , 1

}︀
+ 4

(︀
𝜆−1
* − 1

)︀ 𝑡−1∑︁
𝑘=0

(𝑥𝑖(𝑘 + 1)− 𝑥𝑖(𝑘))
2 (3.18)

Being its own neighbor, agent 𝑖 spends at least 4Δ2
𝑖 money at each step. Summing

up over all the agents, this amounts to 4𝐾(2). This shows that the initial injection of

money allows the system to spend 4𝐾(2) and still be left with 4
(︀
𝜆−1
* − 1

)︀
𝐾(2). The

proof of the lemma now follows directly from the fact that the initial injection of money

is at most 𝑛2.

Note that, at each time step 𝑡, the set of neighbors 𝒩𝑖(𝑡) forms a directed graph 𝐺𝑡,

called the communication network, that changes with time. The bound on the kinetic

2-energy shows that the model slows down to a crawl but it is not enough to prove

convergence, as an agent moving along a circle by 1/𝑡 at time 𝑡 contributes finitely

to the kinetic 2-energy of the system yet travels an infinite distance. However, we can
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utilize this bound on the kinetic 2-energy to prove that the HK model with fully-stubborn

agents, where each agent’s inertia is either 0 or 1, always converges asymptotically. In

the 1-dimensional case, which we will present here, the communication network settles

on a fixed graph for all initial conditions. In the 𝑑-dimensional case with 𝑑 > 1, the

communication network converges for all initial conditions outside a set of measure zero,

which implies that a pertubation of the fully-stubborn agents by an arbitrarily small

amount in the beginning ensures that the system will converge to a fixed configuration

and the communication network will settle on a fixed graph.

Theorem 3.12. The Inertial-HK model, where each agent’s inertia is either 0 or 1,

converges asymptotically, in the case of 𝑑 = 1, to a fixed-point configuration and the

communication graph settles on a fixed graph for all initial conditions.

Proof. The upper bound on the kinetic 2-energy that we get by Lemma 3.11 shows that,

for any arbitrarily small 𝜀 > 0, there exists a time step 𝑡𝜀 such that no agent moves by

a distance of more than 𝜀 at any time 𝑡 ≥ 𝑡𝜀. Consider a fixed time 𝑡0 > 𝑡𝜀, and let, for

brevity, 𝑥𝑖 = 𝑥𝑖(𝑡0) and 𝒩𝑖 = 𝒩𝑖(𝑡0) for each agent 𝑖. We use primes and double primes

to indicate the equivalent quantities for times 𝑡0 + 1 and 𝑡0 + 2.

We will introduce notation for four different sets of agents

∙ Let 𝐿𝑖𝑛𝑖 be the set of agents located at 𝑥𝑖−1−𝒪(𝜀) at time 𝑡0 and at 𝑥𝑖−1+𝒪(𝜀)

at time 𝑡0+1. This set consists of the agents that joined 𝑖’s neighborhood at 𝑡0+1

from the left side of agent 𝑖.

∙ Let 𝐿𝑜𝑢𝑡𝑖 be the set of agents located at 𝑥𝑖−1+𝒪(𝜀) at time 𝑡0 and at 𝑥𝑖−1−𝒪(𝜀)

at time 𝑡0 + 1. This set consists of the agents that left 𝑖’s neighborhood at 𝑡0 + 1

from the left side of agent 𝑖.

∙ Let 𝑅𝑖𝑛𝑖 be the set of agents located at 𝑥𝑖+1+𝒪(𝜀) at time 𝑡0 and at 𝑥𝑖+1−𝒪(𝜀)

at time 𝑡0+1. This set consists of the agents that joined 𝑖’s neighborhood at 𝑡0+1

from the right side of agent 𝑖.

∙ Let 𝑅𝑜𝑢𝑡𝑖 be the set of agents located at 𝑥𝑖+1−𝒪(𝜀) at time 𝑡0 and at 𝑥𝑖+1+𝒪(𝜀)

at time 𝑡0 + 1. This set consists of the agents that left 𝑖’s neighborhood at 𝑡0 + 1

from the right side of agent 𝑖.

It is obvious that all the sets introduced above are disjoint, and their union is the

symmetric difference between 𝒩𝑖 and 𝒩 ′
𝑖 . The locations 𝑥′𝑖 and 𝑥

′′
𝑖 of agent 𝑖 at times

𝑡0 + 1 and 𝑡0 + 2 are given by
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|𝒩𝑖|𝑥′𝑖 =
∑︁

𝑗∈𝒩𝑖∩𝒩 ′
𝑖

𝑥𝑗 +
∑︁

𝑗∈𝐿𝑜𝑢𝑡
𝑖 ∪𝑅𝑜𝑢𝑡

𝑖

𝑥𝑗

|𝒩 ′
𝑖 |𝑥′′𝑖 =

∑︁
𝑗∈𝒩𝑖∩𝒩 ′

𝑖

𝑥′𝑗 +
∑︁

𝑗∈𝐿𝑖𝑛
𝑖 ∪𝑅𝑖𝑛

𝑖

𝑥′𝑗

Since all 𝑥′𝑘 and 𝑥′′𝑘 are of the form 𝑥𝑘 ± 𝒪(𝜀), subtracting the two identities above

shows that

(|𝒩 ′
𝑖 | − |𝒩𝑖|)𝑥𝑖 = (|𝐿𝑖𝑛𝑖 | − |𝐿𝑜𝑢𝑡𝑖 |)(𝑥𝑖 − 1) + (|𝑅𝑖𝑛𝑖 | − |𝑅𝑜𝑢𝑡𝑖 |)(𝑥𝑖 + 1)±𝒪(𝜀𝑛) (3.19)

The dynamics is translation-invariant, thus we can set 𝑥𝑖 = 0. If we choose a small

enough 𝜀, the integrality of the set cardinalities implies that the net flow of neighbors

on the left of agent 𝑖 is the same as it is on the right

|𝐿𝑜𝑢𝑡𝑖 | − |𝐿𝑖𝑛𝑖 | = |𝑅𝑜𝑢𝑡𝑖 | − |𝑅𝑖𝑛𝑖 | (3.20)

Let us now focus on the agents that are undergoing a change of neighbors between

times 𝑡0 and 𝑡0+1. Among these agents, we choose the one that ends up the furthest to

the right at time 𝑡0 + 1, breaking ties by picking the agent with the largest index. We

call this agent 𝑖, and distinguish between two cases

i. 𝑥′𝑖 ≥ 𝑥𝑖: Agent 𝑖 moves to the right. Thus, no agent of 𝑅𝑜𝑢𝑡𝑖 can be fully-stubborn,

since the fully-stubborn agents do not move and cannot leave the neighborhood

of an agent moving to the right from his right side. Also, no agent of 𝑅𝑜𝑢𝑡𝑖 can

be mobile, since, with the ordering of agents being preserved in the HK model

(Section 2.2.1), this would imply the existence of an agent that undergoes a change

of neighbors at time 𝑡0+1 and lands to the right of 𝑖 at time 𝑡0+1, in contradiction

with the definition of 𝑖. Therefore, 𝑅𝑜𝑢𝑡𝑖 must be empty. This in turn implies that

𝐿𝑖𝑛𝑖 is not empty, since 𝑖 undergoes a change of neighbors at time 𝑡0 + 1, and this

means that not all four terms in (3.20) can be zero. Since agent 𝑖 is not moving

left, neither is any agent 𝑗 of 𝐿𝑖𝑛𝑖 . Its set 𝒩𝑗 of neighbors changes between times

𝑡0 and 𝑡0 + 1 and 𝑅𝑜𝑢𝑡𝑗 is empty. The latter is true, since 𝒩𝑗 cannot lose any

fully-stubborn agents to the right and, in addition, any mobile agent 𝑘 in 𝑅𝑜𝑢𝑡𝑗 is

to the left of 𝑖 at time 𝑡0, stays to the left of 𝑖 at time 𝑡0 + 1 by conservation of

ranks, therefore, since 𝑖 is in 𝒩𝑗 , 𝑘 must also be in 𝒩𝑗 . The argument so far uses

the rightmost status of agent 𝑖 only to assert that 𝑅𝑜𝑢𝑡𝑖 is empty. This means that



Chapter 3. Variations of the Hegselmann - Krause model 35

we can now forget about agent 𝑖, choose an agent in 𝐿𝑖𝑛𝑖 , and proceed inductively,

eventually reaching a contradiction.

ii. 𝑥′𝑖 < 𝑥𝑖: Agent 𝑖 moves to the left. However, note here that our previous argument

never uses time directionality, so we can exchange the role of 𝑡0 and 𝑡0 + 1, which

implies that now 𝑥′𝑖 > 𝑥𝑖. We must also swap the superscripts in and out and

instead of choosing 𝑖 as the agent landing furthest to the right, by symmetry we

choose agent 𝑖 as the agent starting the furthest to the right. Since in the HK

model the orderings of the agents are being preserved, this does not violate our

previous argument and we can use it to reach a contradiction in this case as well.

We conclude that, at time 𝑡0, all four terms of (3.20) are equal to zero, for all agents.

Thus, each agent now has a fixed set of neighbors, so the dynamics is specified by the

powers of a fixed stochastic matrix with positive diagonal. Therefore, the communication

network is a fixed graph, and we have an instance of the DeGroot model, which is well

known to converge, as we demonstrated in Section 2.1.1. The system is attracted to a

fixed point at an exponential rate, but we can provide no bound on the time it takes to

fall into that basin of attraction.

While we have shown that the HK model with fully-stubborn agents always converges

asymptotically to a stable state, no effective upper bound on the convergence time is

known, and such an upper bound remains an interesting open question.

3.4 The Asymmetric 𝑘-NN Model

We will now consider a variant of the HK model that differs significantly from all other

models, the Asymmetric 𝑘-Nearest Neighbor (𝑘-NN) model [34]. In the 𝑘-NN model,

agent 𝑖 forms directed links to his 𝑘 nearest neighbors, thus each agent’s neighborhood

consists of exactly 𝑘 agents. In this model, agent 𝑖’s cost function is not continuous in

𝑥−𝑖, which denotes the vector of all agents’ opinions except for agent 𝑖, therefore the

𝑘-NN model need not admit to a pure Nash equilibrium. Indeed, we will show that this

model need not converge, even for the simple case of 𝑘 = 1.

3.4.1 Definition

In the Asymmetric 𝑘-NN model, each agent 𝑖 holds a permanent, intrinsic opinion

𝑠𝑖, and expresses an opinion 𝑥𝑖 that could be different from 𝑠𝑖, as with the FJ model

in Chapter 2. At any time 𝑡, each agent 𝑖 computes her neighborhood 𝒩𝑖(𝑥), forming

directed links to the 𝑘 agents with smallest distance |𝑥𝑗(𝑡) − 𝑠𝑖| and breaking ties in a
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consistent fashion. Furthermore, all agents assign a weight 𝜌 to their intrinsic opinion

when they update their expressed opinions. In this model, 𝜌 is constant in time and

uniform for all agents. Each agent 𝑖 incurs a cost at time 𝑡 equal to

𝐶𝑖(𝑥𝑖,𝑥−𝑖) =
∑︁

𝑗∈𝒩𝑖(𝑥)

(𝑥𝑖(𝑡)− 𝑥𝑗(𝑡))
2 + 𝜌𝑘(𝑥𝑖(𝑡)− 𝑠𝑖)

2 (3.21)

In contrast with all previous models, 𝑖 /∈ 𝒩𝑖(𝑥) in the 𝑘-NN model, therefore 𝑖’s

neighborhood depends only on 𝑥−𝑖. In order to minimize her cost at time 𝑡, agent 𝑖 sets

𝑥𝑖 to be the weighted average of the opinions in 𝒩𝑖(𝑥) and 𝑠𝑖

𝑥𝑖(𝑡+ 1) =

∑︀
𝑗∈𝒩𝑖(𝑥)

𝑥𝑗(𝑡) + 𝜌𝑘𝑠𝑖

𝑘(𝜌+ 1)
(3.22)

3.4.2 Results

In this section, we will show that the Asymmetric 𝑘-NN model need not converge to

a pure strategy Nash equilibrium, even for 𝑘 = 1, with a simple counterexample. This

was proven by Bhawalkar et al [34], who also introduced this model. Before we continue,

we will simplify our notation for 𝑘 = 1. Let 𝑙𝑖(𝑡) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑗 ̸=𝑖|𝑥𝑗(𝑡)− 𝑠𝑖| denote the

nearest neighbor of 𝑖 at time 𝑡, with ties breaking in a consistent fashion. The, the cost

agent 𝑖 incurs at time 𝑡 is

𝐶𝑖(𝑥𝑖,𝑥−𝑖) = (𝑥𝑖(𝑡)− 𝑥𝑙𝑖(𝑡))
2 + 𝜌(𝑥𝑖(𝑡)− 𝑠𝑖)

2 (3.23)

Agent 𝑖 minimizes her cost at time 𝑡 if she sets 𝑥𝑖 equal to

𝑥𝑖(𝑡+ 1) =
𝑥𝑙𝑖(𝑡) + 𝜌𝑠𝑖
𝜌+ 1

(3.24)

We can now prove the following theorem

Theorem 3.13. Consider an instance of the 1-NN model, where 𝑛 = 3, 𝜌 = 1 and the

agents’ intrinsic opinions are 𝑠1 = 0, 𝑠2 = 1/2 and 𝑠3 = 1. This game does not admit a

pure strategy Nash equilibrium.

Proof. First of all, note that 𝑥 ∈ [0, 1]3, since there is no point for any agent to express

an opinion outside the minimum and maximum values of 𝑠. Suppose that a pure Nash

equilibrium exists, with 𝑥 = [𝑎, 𝑏, 𝑐]𝑇 in this equilibrium. Firstly, note that 𝑐 cannot be

less than both 𝑎 and 𝑏, since 𝑐 is either (1 + 𝑎)/2 ≥ 𝑎 or (1 + 𝑏)/2 ≥ 𝑏. Similarly, 𝑎

cannot be greater than both 𝑏 and 𝑐, since 𝑎 is either 𝑏/2 ≤ 𝑏 or 𝑐/2 ≤ 𝑐. These imply
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that 𝑎 ≤ 𝑐 and, in particular, 𝑎 < 𝑐, since if 𝑎 = 𝑐, at least one of them has a feasible

deviation. In addition, if 𝑏 ≤ 𝑎, then the first agent points to the second agent and has

a feasible deviation, and if 𝑏 ≥ 𝑐, the third agent points to the second agent and has a

feasible deviation. Therefore, the ordering between the agents’ expressed opinions must

be 𝑎 < 𝑏 < 𝑐.

Since the ordering is 𝑎 < 𝑏 < 𝑐, the first agent points to the second agent and the

third agent also points to the second agent. Therefore, 𝑎 = 𝑏/2 and 𝑐 = (1 + 𝑏)/2. We

distinguish between two cases, one where the second agent points to the first agent, and

one where the second agent points to the third agent.

∙ If the second agent points to the first agent, we have that 𝑏 = (1/2 + 𝑎)/2 =

(1 + 𝑏)/4. Solving this for 𝑏, we get 𝑏 = 1/3, which, in turn, gives 𝑎 = 1/6 and

𝑐 = 2/3. Since 𝑐 is closer to 1/2 than 𝑎, the second agent should instead point to

the third agent.

∙ If the second agent points to the third agent, we have that 𝑏 = (1/2 + 𝑐)/2 =

(2 + 𝑏)/4. Solving this for 𝑏, we get 𝑏 = 2/3, which, in turn, gives 𝑎 = 1/3 and

𝑐 = 5/6. Since 𝑎 is closer to 1/2 than 𝑐, the second agent should instead point to

the first agent.

Thus, a pure Nash equilibrium does not exist in this game.

3.5 The Generalized Asymmetric Model

In this section we will consider a generalization of the HK model. Specifically, we will

define a game where each weight assigned by agent 𝑖 to agent 𝑗 depends on the distance of

all agents’ expressed opinions from 𝑖’s intrinsic opinion. Moreover, 𝑗’s influence over 𝑖 is

asymmetric, and minimal assumptions are being made on the agents’ weights. However,

in contrast with the previous model, the agents’ cost functions are continuous in this

model and Rosen’s theorem can be applied to guarantee the existence of a pure Nash

equilibrium. This model is called the Generalized Asymmetric model [34], of which the

𝑘-NN model is a special case.

3.5.1 Definition

In the Generalized Asymmetric model, as with the previous model, each agent 𝑖 holds

a permanent, intrinsic opinion 𝑠𝑖, and expresses an opinion 𝑥𝑖 that could be different from

𝑠𝑖. However, in this model, the vector of expressed opinions 𝑥−𝑖 along with 𝑠𝑖 determines

the strength of 𝑖’s friendship with all other agents. We define the distance of agent 𝑗’s
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expressed opinion from agent 𝑖’s intrinsic opinion at time 𝑡 as 𝑑𝑖𝑗(𝑡) = |𝑥𝑗(𝑡)−𝑠𝑖|, for 𝑗 ̸= 𝑖.

The weight that 𝑖 assigns to 𝑗’s expressed opinion is 𝑞𝑖𝑗(𝑥−𝑖, 𝑠𝑖) = 𝐹𝑖(𝑑
𝑖
𝑗(𝑡), 𝑑

𝑖
−𝑖,−𝑗(𝑡)),

where 𝐹𝑖 is a continuous function that decreases as 𝑑𝑖𝑗(𝑡) increases and increases as

𝑑𝑖−𝑖,−𝑗(𝑡) increases. Intuitively, if we freeze all other agents besides 𝑗, 𝑖 assigns more

weight to 𝑗 if their distance decreases, and less if it increases. Additionally, if we freeze

agents 𝑖 and 𝑗, 𝑖 assigns more weight to 𝑗 if the other agents move away from 𝑠𝑖 and

less if they move towards 𝑠𝑖. Also, each agent has a different weight 𝜌 that she assigns

to her own intrinsic opinion when she updates her expressed opinion.

The cost that agent 𝑖 incurs in the Generalized Asymmetric model is

𝐶𝑖(𝑥𝑖,𝑥−𝑖) =
∑︁
𝑗 ̸=𝑖

𝑞𝑖𝑗(𝑡)(𝑥𝑖(𝑡)− 𝑥𝑗(𝑡))
2 + 𝜌𝑖(𝑥𝑖(𝑡)− 𝑠𝑖)

2 (3.25)

We see that each agent has a unique dominant strategy at any time step, to express

the opinion that minimizes her cost. Therefore, each agent has a best response

𝑥𝑖(𝑡+ 1) =

∑︀
𝑗 ̸=𝑖 𝑞𝑖𝑗(𝑡)𝑥𝑗(𝑡) + 𝜌𝑖𝑠𝑖∑︀

𝑗 ̸=𝑖 𝑞𝑖𝑗(𝑡) + 𝜌𝑖
(3.26)

that minimizes her cost, if all other agents do not move at time 𝑡+ 1.

3.5.2 Results

Unfortunately, not much is known about the convergence properties of the General-

ized Asymmetric model. For continuous cost functions 𝐶𝑖, we have the next theorem

which follows from Rosen’s theorem.

Theorem 3.14. The Generalized Asymmetric model admits to a pure strategy Nash

equilibrium when the cost functions 𝐶𝑖 are continuous.

Proof. Since 𝑞𝑖𝑗 is independent of 𝑥𝑖 and only depends on 𝑥−𝑖 and 𝑠𝑖, the function

𝑞𝑖𝑗(𝑥−𝑖, 𝑠𝑖)(𝑥𝑖(𝑡)− 𝑥𝑗(𝑡))
2 is convex in 𝑥𝑖. Therefore, 𝐶𝑖(𝑥𝑖,𝑥−𝑖) is convex in 𝑥𝑖 and

also continuous in 𝑥, by our assumption. This implies that the Generalized Asymmetric

model is a concave game (Section 4.3.1) and, from Rosen’s theorem, admits to a pure

strategy Nash equilibrium [35].

While we have proved that there exists a Nash equilibrium in the Generalized Asym-

metric model, it is not known whether the model always converges to the Nash equilib-

rium. The convergence of the Generalized Asymmetric model remains one of the most

interesting open questions on non-linear models, and in the field of opinion dynamics in

general.



Chapter 4

Model Analysis Toolbox

The purpose of this chapter is to present several mathematical tools used in the

analysis of the different models in the field of opinion dynamics. We will present the ideas

behind these theorems and specify their overall contribution in the field. While there

are many interesting scientific results that utilize ideas not presented in this chapter, we

believe the collection of tools presented here consists of some of the most fundamental

and important ideas that were used to provide us with the most significant results. This

chapter is quite important as, in our opinion, one needs to be familiarized with almost

all the following concepts in order to undertake research in the field of opinion dynamics.

We begin by defining the potential games as those that admit a specific potential

function and show that the point where this function reaches its optimum value is

exactly the Nash equilibrium of a system. We continue by presenting certain fixed-point

theorems that are utilized to prove the existence of a Nash equilibrium, and maybe offer

some ideas on how to prove convergence. Then, we focus our attention on concave games,

where the cost functions of the agents are concave, and state one of the most important

theorems about them, proved by Rosen [35], before continuing with gradient descent-

like methods that are useful for minimizing specific functions. Finally, we present the

innovative ideas of the energy approach to a system, that can be used to circumvent

several problems arising with step-by-step methods.

4.1 Potential Functions

The concept of a potential function was first used in the analysis of congestion games.

Specifically, Rosenthal proved, in 1973, that every congestion game has a function which

can be used to prove the existence of, and sometimes convergence to, a Nash equilibrium

[36]. We call this function the potential function of the game and the idea behind the

concept is to provide a sense of quantifiable distance from the game’s equilibrium point.

39
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In addition, games that possess such functions are call potential games. Monderer and

Shapley utilized potential functions in 1996 to prove the converse; for every potential

game, there exists a congestion game with the same potential function [37].

While the concept of the potential function was, at first, closely associated with

congestion games, it has since grown as a mathematical tool and is utilized in general

optimization problems, due to its simplicity and usefulness. In our field, we can consider

the agents, each one trying selfishly to minimize her own cost, as having a global, unified

potential function that they are working together to optimize. Thus, the potential

function in opinion dynamics is closely associated with the cost that each agent incurs

in the model.

We will continue by defining the basic types of potential functions before presenting

one that has provided interesting results in the field. Consider a model with 𝑛 agents

that can express any opinion 𝑥𝑖 ∈ R, and have cost functions 𝐶𝑖 : R𝑛 → R.

Definition 4.1 (Exact Potential Function). If, in our model, there exists a function

Φ : R𝑛 → R such that for every agent 𝑖 and every 𝑥𝑖, 𝑥
′
𝑖

Φ(𝑥′𝑖,𝑥−𝑖)− Φ(𝑥𝑖,𝑥−𝑖) = 𝐶𝑖(𝑥
′
𝑖,𝑥−𝑖)− 𝐶𝑖(𝑥𝑖,𝑥−𝑖) (4.1)

then Φ is called an exact potential function of our model.

Intuitively, the exact potential function has the property that when any agent 𝑖

switches from an expressed opinion 𝑥𝑖 to 𝑥
′
𝑖 with all other agents fixed, the change in

the potential function is exactly equal to the change in 𝑖’s cost. We can generalize

the concept by introducing a weight that makes the two values not exactly equal but

proportional.

Definition 4.2 (Weighted Potential Function). If, in our model, there exists a function

Φ : R𝑛 → R and a vector 𝑤 ∈ R𝑛++, such that for every agent 𝑖 and every 𝑥𝑖, 𝑥
′
𝑖

Φ(𝑥′𝑖,𝑥−𝑖)− Φ(𝑥𝑖,𝑥−𝑖) = 𝑤𝑖(𝐶𝑖(𝑥
′
𝑖,𝑥−𝑖)− 𝐶𝑖(𝑥𝑖,𝑥−𝑖)) (4.2)

then Φ is called a weighted potential function of our model.

We can further generalize the concept by merely requiring the signs of the differences

in the values above to be equal.

Definition 4.3 (Ordinal Potential Function). If, in our model, there exists a function

Φ : R𝑛 → R, such that for every agent 𝑖 and every 𝑥𝑖, 𝑥
′
𝑖
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𝐶𝑖(𝑥
′
𝑖,𝑥−𝑖)− 𝐶𝑖(𝑥𝑖,𝑥−𝑖) > 0 ⇐⇒ Φ(𝑥′𝑖,𝑥−𝑖)− Φ(𝑥𝑖,𝑥−𝑖) > 0 (4.3)

then Φ is called an ordinal potential function of our model.

Intuitively, in a game with an ordinal potential function with all other agents fixed,

when agent 𝑖’s cost increases, Φ increases as well, and when 𝑖’s cost decreases, Φ decreases

as well, for any agent 𝑖. Before we continue, we will present a significant result on

potential functions concerning their relation to pure Nash equilibria.

Theorem 4.4. Every potential game admits to at least one pure strategy Nash equilib-

rium. Furthermore, if Φ is the game’s potential function, every Nash equilibrium is a

local optimum of Φ.

This theorem was proved by Monderer and Shapley in 1996 [37]. However, we will

skip the proof as it is fairly simple and follows directly from our definition of the potential

function and the finiteness of each agent’s sequence of improvement steps. It is under-

stood now that potential functions are extremely helpful tools in optimization problems,

when they exist, and, besides guaranteeing the existence of a pure Nash equlibrium in

our model, they also provide us with significant insight and interesting convergence

properties.

4.1.1 Application to Opinion Dynamics

In this section, we continue by presenting the link between potential games and

opinion dynamics. The well-studied properties of potential functions have been utilized

to provide deep insight and results in the field [9, 11]. It should be clear by now that

potential functions are extremely useful for the analysis of an opinion formation model,

when they exist. However, the important question remains open; when do opinion

formation models admit to a potential function? While this question is not resolved for

the general case of ordinal potential functions, we present here a necessary condition for

an opinion formation model to admit to an exact potential function.

Theorem 4.5. Consider an opinion formation model where each agent 𝑖 expresses opin-

ion 𝑥𝑖 ∈ R and has a cost function 𝐶𝑖 : R𝑛 → R that is continuous and twice differen-

tiable. Then, the model admits to an exact potential function if and only if for any two

agents 𝑖 and 𝑗

𝜕2𝐶𝑖(𝑥)

𝜕𝑥𝑖𝜕𝑥𝑗
=
𝜕2𝐶𝑗(𝑥)

𝜕𝑥𝑖𝜕𝑥𝑗
(4.4)
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We continue by proving that the undirected FJ model (Section 2.1.2) admits a po-

tential function used to provide tight bounds on the Price of Anarchy [11]. Indeed, the

cost functions in the undirected FJ model satisfy the necessary condition of Theorem

4.5, since 𝜕2𝐶𝑖(𝑥)
𝜕𝑥𝑖𝜕𝑥𝑗

= −2𝑤𝑖𝑗 ,
𝜕2𝐶𝑗(𝑥)
𝜕𝑥𝑖𝜕𝑥𝑗

= −2𝑤𝑗𝑖 and 𝑤𝑖𝑗 = 𝑤𝑗𝑖. Therefore, the undirected

FJ model admits to an exact potential function as stated by the theorem below.

Theorem 4.6. Consider an instance of the undirected FJ model with 𝑛 agents that

have intrinsic opinions 𝑠 and expressed opinions 𝑥. Then, this model admits to an

exact potential function

Φ(𝑥) =
∑︁

{𝑖,𝑗}∈𝐸(𝐺)

𝑤𝑖𝑗(𝑥𝑖 − 𝑥𝑗)
2 +

𝑛∑︁
𝑖=1

𝑤𝑖𝑖(𝑥𝑖 − 𝑠𝑖)
2 (4.5)

Proof. Let 𝑖 be an agent that deviates from his expressed opinion 𝑥𝑖 to 𝑥
′
𝑖, while all

other agents remain fixed. The cost that 𝑖 incurs is 𝐶𝑖(𝑥𝑖,𝑥−𝑖) =
∑︀

𝑗∈𝒩𝑖
𝑤𝑖𝑗(𝑥𝑖 − 𝑥𝑗)

2+

𝑤𝑖𝑖(𝑥𝑖 − 𝑠𝑖)
2. Therefore, the difference in 𝑖’s cost from his deviation is

𝐶𝑖(𝑥
′
𝑖,𝑥−𝑖)− 𝐶𝑖(𝑥𝑖,𝑥−𝑖) =

∑︁
𝑗∈𝒩𝑖

𝑤𝑖𝑗
(︀
(𝑥′𝑖 − 𝑥𝑗)

2 − (𝑥𝑖 − 𝑥𝑗)
2)︀

+ 𝑤𝑖𝑖
(︀
(𝑥′𝑖 − 𝑠𝑖)

2 − (𝑥𝑖 − 𝑠𝑖)
2)︀

If we look at the difference in value of the potential function before and after the

deviation, we have that all summands of the form 𝑤𝑢𝑣(𝑥𝑢 − 𝑥𝑣)
2 along with those of

the form 𝑤𝑢𝑢(𝑥𝑢 − 𝑠𝑢)
2, where 𝑢, 𝑣 ̸= 𝑖, are negated since both 𝑢 and 𝑣 remain fixed.

Therefore, we get

Φ(𝑥′𝑖,𝑥−𝑖)− Φ(𝑥𝑖,𝑥−𝑖) =
∑︁

{𝑖,𝑗}∈𝐸(𝐺)

𝑤𝑖𝑗
(︀
(𝑥′𝑖 − 𝑥𝑗)

2 − (𝑥𝑖 − 𝑥𝑗)
2)︀

+ 𝑤𝑖𝑖
(︀
(𝑥′𝑖 − 𝑠𝑖)

2 − (𝑥𝑖 − 𝑠𝑖)
2)︀

Since we have an instance of the undirected FJ model, 𝑤𝑖𝑗 = 𝑤𝑗𝑖 for any two agents

𝑖, 𝑗. This implies that the sets 𝐴 =
{︀
𝑗 : {𝑖, 𝑗} ∈ 𝐸(𝐺)

}︀
and 𝒩𝑖 are equal, hence the two

differences above are equal, and Φ is an exact potential function of the FJ model.

4.2 Fixed-Point Theorems

In this section, we analyze one of the most fundamental mathematical concepts used

to prove the existence, and sometimes uniqueness, of a Nash equilibrium in game theory,
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the fixed point. We present two of the most significant fixed-point theorems, by Brouwer

and Kakutani, and show their relation to game theory and opinion dynamics in par-

ticular. While fixed-point theorems appear in many different regions of mathematics

and their usefulness cannot be overstated, they hold a distinguished place in the field

of game theory, as they were used by Nash in his development of the Nash equilibrium

as a solution concept for non-cooperative games. We begin by defining the concept of a

fixed point in the most general setting.

Definition 4.7 (Fixed Point). Consider a function 𝐹 : R𝑛 → R𝑛. If there exists a point

𝑥0 ∈ R𝑛 such that 𝐹 (𝑥0) = 𝑥0, then 𝑥0 is called a fixed point of 𝐹 .

In general, a fixed-point theorem is a result stating that a function 𝐹 will have at

least one fixed point under certain conditions on 𝐹 that can be stated in general terms.

Although there exist a significant number of fixed-point theorems in mathematics, only

a handful are of interest in game theory. We present two that we consider the most

significant, which played a central role in the proof of existence of general equilibrium

in market economies by Arrow and Debreu [38] and in the proof of existence of a mixed

Nash equilibrium in every finite game for any number of players by Rosen [35], starting

with Brouwer’s fixed-point theorem.

4.2.1 Brouwer’s Fixed-Point Theorem

Brouwer’s fixed-point theorem [39] stands out among hundreds of others due to its

broad range of applications across numerous fields of mathematics. In its original field,

this result is one of the key theorems characterizing the topology of Euclidean spaces,

which gives it a place among the fundamental theorems of topology. Here, we present a

simple version of the theorem in the plane and subsequently generalize it to any convex

compact set.

Theorem 4.8. Let 𝒟 = {(𝑥, 𝑦) ∈ R2 : (𝑥− 𝑎)2 + (𝑦 − 𝑏)2 ≤ 𝑟} be a closed disk in R2,

with center (𝑎, 𝑏) and radius 𝑟, and 𝑓 : 𝒟 → 𝒟 a continuous function. Then, 𝑓 has at

least one fixed point.

While the theorem’s proof is somewhat complicated, it is surprisingly easy to prove

in one dimension, thus we will state the proof for a continuous function 𝑓 defined on a

closed interval [𝑎, 𝑏] ⊂ R that takes values on the same interval.

Proof. Consider the function 𝑔(𝑥) = 𝑓(𝑥) − 𝑥. We have that 𝑔(𝑎) ≥ 0 and 𝑔(𝑏) ≤ 0.

Then, by the intermediate value theorem, there exists a point 𝑥0 ∈ [𝑎, 𝑏] such that

𝑔(𝑥0) = 0. Therefore, 𝑓(𝑥0) = 𝑥0, and 𝑥0 is a fixed point of 𝑓 .
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Intuitively, Theorem 4.8 implies that if one stirs a cup of coffee to dissolve a lump of

sugar, there is always a point without motion. However, this example is not a perfect

one as it does not demonstrate the non-uniqueness of the fixed point. A better example

is if one takes two identical horizontal sheets, crumple and flatten one of them and then

place it on top of the other. Brouwer’s fixed-point theorem then implies that there exists

a point on the crumpled sheet that is in the same place as on the other sheet.

We continue by generalizing Theorem 4.8 to any convex compact set in the Euclidean

space.

Theorem 4.9. Let 𝐾 be a convex compact (closed and bounded) subset of a Euclidean

space, and 𝑓 : 𝐾 → 𝐾 a continuous function. Then, 𝑓 has at least one fixed point.

We should note that each of the preconditions necessary by the theorem is very

important, since the violation of any of them renders the theorem unprovable. Indeed,

we provide a counterexample for every case

∙ 𝐾 is convex and closed, but not bounded:

Consider the function 𝑓(𝑥) = 𝑥+ 1 from R to itself. Since R is convex and closed

but not bounded, the theorem does not hold. Indeed, as 𝑓 shifts each point to the

right, it cannot have a fixed point.

∙ 𝐾 is convex and bounded, but not closed:

Consider the function 𝑓(𝑥) = 𝑥+1
2 from the open interval (−1, 1) to itself. Since

(−1, 1) is convex and bounded, but not closed, the theorem does not hold. Indeed,

as 𝑓 again shifts each point to the right, it cannot have a fixed point. Note that 𝑓

has a fixed point in the closed interval [−1, 1], namely 𝑓(1) = 1.

∙ 𝐾 is compact (closed and bounded), but not convex:

Consider the function 𝑓(𝑟, 𝜃) = (𝑟, 𝜃 + 𝜋/4) in polar coordinates, from the unit

circle to itself. Since the unit circle is compact but not convex (as it has a hole),

the theorem does not hold. Indeed, as 𝑓 shifts each point by 45 degrees in the

circle, it cannot have a fixed point. Note that 𝑓 has a fixed point in the unit disk,

namely the origin (0, 0).

In addition, it should be noted that Brouwer’s fixed-point theorem and Sperner’s

lemma [40], an important result in combinatorics and very useful in game theory,

are equivalent, as assuming one of them, we are able to prove the other. Moreover,

while Brouwer’s fixed-point theorem proves the existence of a fixed point, it is a non-

constructive result and does not give any insight as to how to find one. Indeed, the

problem of finding a Brouwer fixed-point is proven to be PPAD-complete, a complexity

class introduced by Papadimitriou et al [41], and is believed to be a difficult problem.
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4.2.2 Kakutani’s Fixed-Point Theorem

In this section, we present Kakutani’s fixed-point theorem, which is a generalization

of Brouwer’s fixed-point theorem. Kakutani extended Brouwer’s theorem in 1941 [42]

to include set-valued functions. We begin with a few definitions, then state the theorem

and provide an example in order to assist the reader in the theorem’s comprehension.

Definition 4.10 (Set Valued Function). A set-valued function 𝜑 from a set 𝐴 to a set

𝐵 is a rule that associates one or more points in 𝐵 with each point in 𝐴. Formally

it can be seen just as an ordinary function from 𝐴 to the power set of 𝐵, written as

𝜑 : 𝐴→ 2𝐵, such that 𝜑(𝑥) is non-empty for every 𝑥 ∈ 𝐴.

Definition 4.11 (Closed Graph). A set-valued function 𝜑 : 𝐴 → 2𝐵 is said to have a

closed graph if the set 𝐶 = {(𝑥, 𝑦) : 𝑦 ∈ 𝜑(𝑥)} is a closed subset of the cartesian product

𝐴×𝐵.

We also extend our definition of a fixed point (Definition 4.7) to include fixed points

of set-valued functions.

Definition 4.12 (Fixed Point of a Set-Valued Function). Consider a set-valued function

𝜑 : 𝐴→ 2𝐴. If there exists a point 𝑥0 ∈ 𝐴 such that 𝑥0 ∈ 𝜑(𝑥0), then 𝑥0 is called a fixed

point of 𝜑.

We are now ready to state Kakutani’s fixed-point theorem.

Theorem 4.13. Let 𝑆 be a non-empty, compact and convex subset of a Euclidean space

R𝑛, and 𝜑 : 𝑆 → 2𝑆 a set-valued function on 𝑆 with a closed graph. Also, let 𝜑(𝑥) be

non-empty and convex for all 𝑥 ∈ 𝑆. Then, 𝜑 has at least one fixed point.

Consider the following example to help with the comprehension of the theorem. Let

𝑓(𝑥) be a set-valued function defined on the closed interval [0, 1] that maps a point

𝑥 ∈ [0, 1] to a subset of the closed interval [1 − 𝑥/2, 1 − 𝑥/4]. Then, 𝑓 satisfies all the

assumptions of Theorem 4.13, thus it has at least one fixed-point. If we plot the function

on the closed interval [0, 1] we get Figure 4.1.

Every point in the intersection of the red dotted line and the shaded grey area is a

fixed point of 𝑓 , which implies that, in this case, 𝑓 has an infinite number of fixed points.

Indeed, 𝑥 = 0.72, denoted in Figure 4.1 with the dashed blue line, is a fixed point, since

[1− 0.72/2, 1− 0.72/4] = [0.64, 0.82] and 0.72 ∈ [0.64, 0.82].

Kakutani’s fixed-point theorem has a significant number of applications to game

theory. Specifically, as is discussed in Kakutani’s original paper, the theorem can be

used in zero-sum games, where each player’s gain or loss in utility is exactly balanced
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Figure 4.1: An example of Kakutani’s fixed-point theorem

by the losses or gains in utility of the other players, to prove the minimax theorem.

However, its most important contribution to game theory is perhaps its application in

the proof by Nash of the existence of a mixed strategy Nash equilibrium in every finite

game for any number of players, a work that later earned him a Nobel Prize in Economics

[20].

In such a game, the tuples of mixed strategies chosen by each player constitutes the

set 𝑆, and 𝜑(𝑥) is the function that, for the players’ strategies in 𝑥, returns a new tuple

where each player’s strategy is her best response to the other players’ strategies in 𝑥. It

is possible for two or more strategies to be equally good, thus 𝜑 is set-valued. A Nash

equilibrium of this game is defined as a fixed point of 𝜑, specifically a tuple of strategies

𝑥0 where each player’s strategy is a best response to the strategies of the other players

in 𝑥0. The existence of such a fixed point, therefore a Nash equilibrium, follows directly

from Kakutani’s fixed-point theorem.

4.3 Concave Games

In this section we focus our attention on concave games. Concave games are char-

acterized by two properties; every strategy lies inside a convex region of the product

space of the individual strategies and each player’s payoff function is concave. Before

we continue, we define them formally below

Definition 4.14 (Concave Game). A game with 𝑛 players is called a concave game if

and only if it satisfies the following properties:
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∙ Every joint strategy 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛), represented by a point in the product

space of the individual strategy spaces, lies inside a convex and compact region 𝑅

of the product space.

∙ Each player’s payoff function 𝜑𝑖 is concave in his own strategy 𝑥𝑖.

Concave games have been studied a lot since they possess interesting properties that

simplifies their analysis. Rosen, in his infamous theorem presented below, proved the

existence of equilibrium points for every 𝑛-person concave game, and specified a certain

property of the players’ cost functions necessary for the equilibrium point to be unique.

He also showed that if this property holds, the continuous best-response dynamics of

the game converge to the unique equilibrium for any starting point.

We continue with the definition of a socially concave game, introduced by Even-Dar

et al [43].

Definition 4.15 (Socially Concave Game). A game with 𝑛 players is called a socially

concave game if and only if it satisfies the following properties:

∙ For every agent 𝑖, there exists a 𝜆𝑖 > 0 such that 𝑓(𝑥) =
∑︀

𝑖 𝜆𝑖𝜑𝑖(𝑥) is concave in

𝑥.

∙ For every agent 𝑖, the utility function 𝜑𝑖(𝑥𝑖,𝑥−𝑖) is concave in 𝑥𝑖 and convex in

𝑥−𝑖.

If, in the definition above, we replace concavity with strict concavity, we define a strict

socially concave game. In the next section, we show that strict socially concave games

always satisfy the assumptions of Rosen’s theorem, thus the continuous best-response

dynamics of these games always converge to an equilibrium point for any starting point.

4.3.1 Rosen’s Theorem

Certainly one of the most important results in Convex Optimization theory, Rosen’s

theorem sheds light on the convergence properties of 𝑛-person concave games. Proved

by Rosen in 1965 [35], it consists of three parts, each one providing deep insight into the

existence and uniqueness of Nash equilibria, and the necessary conditions for convergence

of a concave game to them. We will present each section of Rosen’s theorem as an

individual theorem, without providing any proof since we prefer to present these ideas

without getting into technical details.

Theorem 4.16. For every 𝑛-person concave game, as defined in Definition 4.14, there

exists at least one equilibrium point.
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This theorem follows directly from the application of Kakutani’s fixed-point theorem

(Section 4.2.2) on the convex and compact set of players’ strategies 𝑅, along with a

point-to-set mapping from 𝑅 to 𝑅, that takes each point 𝑥 ∈ 𝑅 to the point where each

player chooses her best-response to the strategy of all other players in 𝑥, that maximizes

her utility function.

While equilibrium points are guaranteed to exist in concave games by Theorem 4.16,

their usefulness is limited since their uniqueness is not guaranteed. In fact, many games

possess an infinite number of equilibrium points [44]. We continue by defining an addi-

tional concavity property that, when satisfied, guarantees the uniqueness of the equilib-

rium point.

Definition 4.17 (Diagonal Strict Concavity). Consider a 𝑛-person concave game with

the players’ strategies lying inside a convex and compact set 𝑅, a coefficient vector

𝑟 ∈ R++ and a weighted nonnegative sum of the players’ payoff functions

𝜎(𝑥, 𝑟) =
𝑛∑︁
𝑖=1

𝑟𝑖𝜑𝑖(𝑥).

We also denote by 𝑔(𝑥, 𝑟) the function

𝑔(𝑥, 𝑟) =

⎡⎢⎢⎢⎢⎢⎣
𝑟1∇1𝜑1(𝑥)

𝑟2∇2𝜑2(𝑥)
...

𝑟𝑛∇𝑛𝜑𝑛(𝑥)

⎤⎥⎥⎥⎥⎥⎦
and call it the pseudogradient of 𝜎(𝑥, 𝑟). The function 𝜎(𝑥, 𝑟) is called diagonally

strictly concave for 𝑥 ∈ 𝑅 and fixed 𝑟, if the symmetric matrix
[︀
𝐺(𝑥, 𝑟) +𝐺𝑇 (𝑥, 𝑟)

]︀
is

negative definite for 𝑥 ∈ 𝑅, where 𝐺(𝑥, 𝑟) is the Jacobian matrix of 𝑔(𝑥, 𝑟).

Rosen utilizes the Karush-Kuhn-Tucker [45, 46] conditions to show that the diagonal

scrict concavity of 𝜎(𝑥, 𝑟) is sufficient to prove the uniqueness of the equilibrium point.

Theorem 4.18. Consider a 𝑛-person concave game that has at least one equilibrium

point 𝑥0 from Theorem 4.16. Then, if 𝜎(𝑥, 𝑟) is diagonally strictly concave for some

𝑟 ∈ R++, the equilibrium point 𝑥0 is unique.

Finally, we show that diagonal strict concavity on 𝜎(𝑥, 𝑟) implies the convergence

of the continuous best-response dynamics of a 𝑛-person concave game to the unique

equilibrium point, for any set of initial conditions. To prove this result, Rosen utilized his

previous theorems along with the Karush-Kuhn-Tucker conditions to develop a gradient

descent-like approach (Section 4.4) and prove that the distance of the current point
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𝑥 ∈ 𝑅 from 𝑥0 is decreasing with time, therefore it approaches zero asymptotically, and

the system will converge asymptotically to 𝑥0.

Theorem 4.19. Consider a 𝑛-person concave game, with the property that 𝜎(𝑥, 𝑟) is

diagonally strictly concave for some 𝑟 ∈ R++. From Theorem 4.18, the game has a

unique equilibrium point 𝑥0, and the continuous best-response dynamics of the game,

where each player changes her strategy to one that maximizes her utility function given

that all other players remain fixed, converge asymptotically to 𝑥0 for any initial point

𝑥 ∈ 𝑅.

Strict socially concave games, as defined in Definition 4.15 with strict concavity,

satisfy the conditions of Theorems 4.18 and 4.19, therefore, in strict socially concave

games, the continuous best-response dynamics always converge to the unique equilibrium

point for any starting point. However, if the conditions of Theorem 4.19 do not hold,

the best-response dynamics need not converge to any equilibrium. For example, there

exists a 2-person non-strict socially concave game in which the best-response dynamics

do not converge. Furthermore, if players move towards the point chosen by best-response

dynamics but not at a fixed proportional speed, the dynamics need not converge. In

addition, in socially concave games, the sequential best-response dynamics, where each

agent chooses her best response in turns, need not converge, even for the case of 2

players.

It should be noted here that Rosen’s theorem was used by Bhawalkar et al [34]

to prove the existence of a Nash equilibrium for the Generalized Asymmetric model

(Section 3.5.2) and to prove that the Asymmetric 𝑘-NN model need not necessarily

converge, since the agents’ cost functions are not convex (Section 3.4.2).

4.4 Gradient Descent Methods

Up until now, we have analyzed several tools used to prove the existence of equilib-

rium points for opinion formation models. While some of them also provide a framework

suitable to study the convergence properties of the models, they require strong assump-

tions and cannot be generalized properly. Here, we present one of the most significant

methods used in optimization problems in order to locate a local (or global) minimum

of a function, called gradient descent. Recall that an equilibrium point of an opinion

formation model is always a local minimum of a potential function (Theorem 4.4), if our

model admits to one. Therefore, we strive to minimize the potential function in order

to reach the equilibrium point.

The gradient descent method makes use of the observation that the value of a func-

tion 𝐹 decreases fastest if, from a specific point 𝑥, one takes steps proportional to the
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negative of the gradient of 𝐹 at 𝑥, −∇𝐹 (𝑥). Gradient descent, sometimes also called

steepest descent, is a first-order technique so significant, it has spawned several first-order

variations, which provide a framework for the analysis of models where simple gradient

descent fails. However, all such variations fall under one of the two main categories of

first-order techniques; gradient descent or mirror descent. Here, we present the ideas of

both methods, without getting into many technical details, and show their usefulness in

the analysis of opinion formation models.

4.4.1 Gradient Descent

Gradient descent, in its simplest form, is a first-order iterative algorithm used to

locate a local minimum of a function.

Definition 4.20 (Gradient Descent). Consider a multi-variable function 𝐹 , and a point

𝑥𝑛. Let 𝐹 be defined and differentiable in a neighborhood of 𝑥𝑛. Then, in the gradient

descent method, at step 𝑛+ 1 of the algorithm, we move to the point

𝑥𝑛+1 = 𝑥𝑛 − 𝛾𝑛∇𝐹 (𝑥𝑛), 𝑛 ≥ 0 (4.6)

with 𝛾𝑛 a scalar value called the step size of the algorithm. Another way to write

the above equation is the following

𝑥𝑛+1 = 𝑎𝑟𝑔min
𝑥

(︁
⟨∇𝐹 (𝑥𝑛), 𝑥⟩+

1

𝛾𝑛
‖𝑥− 𝑥𝑛‖22

)︁
, 𝑛 ≥ 0 (4.7)

where ⟨𝑎, 𝑏⟩ is the inner product of 𝑎 and 𝑏.

It is easy to see that for 𝛾𝑛 small enough, 𝐹 (𝑥𝑛+1) ≤ 𝐹 (𝑥𝑛). Therefore, we get the

sequence 𝐹 (𝑥0) ≥ 𝐹 (𝑥1) ≥ 𝐹 (𝑥2) ≥ . . ., which hopefully converges to a local minimum.

Next, we see a set of conditions on 𝐹 and 𝛾 that guarantee the convergence of the

method to a minimum. Note that, for a convex function 𝐹 , there is only a single global

minimum, therefore, if the method converges, it will converge to the global minimum of

𝐹 .

Theorem 4.21. Let 𝐹 be a convex function that is differentiable and its gradient ∇𝐹
is Lipschitz continuous. Also, consider a sequence of step sizes 𝛾𝑛 that satisfy the Wolfe

conditions [47]. Then, there exists a point 𝑥* such that 𝐹 (𝑥*) ≤ 𝐹 (𝑥) for all 𝑥, and the

gradient descent method defined =at Definition 4.20 converges to 𝑥*.

While the method of gradient descent is a fundamental tool of convex non-linear

optimization, it is not without flaws. There are certain classes of pathological functions
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that render gradient descent not a particularly useful technique. In addition, gradient

descent does not converge very fast to the minimum, sometimes requiring many iterations

to arrive at a specified distance from the point of convergence. Indeed, there are many

techniques, based on Newton’s method, that converge in fewer iterations. However, the

computational cost of each iteration step is significantly higher in these techniques, and

its simplicity and variety of applications make gradient descent almost always the first

choice in non-linear optimization.

Gradient descent can be used in opinion dynamics to assist in the understanding of a

model’s convergence properties. It can provide insight into how the model’s update rule

will unfold over time and study whether its iteration will eventually converge. Indeed,

gradient descent was used by Rosen in his proof of Theorem 4.19, and we can also

show that in undirected linear models, like the Friedkin-Johnsel model (Section 2.1.2),

the concurrent best-respone strategy used by all agents is equivalent to performing a

gradient descent method on the model’s potential function [48].

We proceed to show that the last claim holds. Consider an instance of the undirected

FJ model. The game admits to a potential function

Φ(𝑥) =
𝑛∑︁
𝑖=1

𝑥𝑖

(︁
𝑤𝑖𝑖(𝑥𝑖 − 𝑠𝑖) +

𝑛∑︁
𝑗 ̸=𝑖

𝑤𝑖𝑗(𝑥𝑖 − 𝑥𝑗)
)︁

(4.8)

From (2.16), at each time step, each agent sets his opinion to

𝑥𝑖(𝑡+ 1) = 𝑤𝑖𝑖𝑠𝑖 +

𝑛∑︁
𝑗 ̸=𝑖

𝑤𝑖𝑗𝑥𝑗(𝑡) (4.9)

or, in matrix form

𝑥(𝑡+ 1) = 𝐴𝑥(𝑡) +𝐵𝑠 (4.10)

with 𝑤𝑖𝑗 = 0 for 𝑗 /∈ 𝒩𝑖. Then, the potential function can be rewritten in matrix

form as

Φ(𝑥) = 𝑥𝑇𝐿𝑥−𝐵𝑥 (4.11)

where 𝐿 is the Laplacian matrix of the model, with 𝐿𝑖𝑖 =
∑︀𝑛

𝑗=1𝑤𝑖𝑗 and 𝐿𝑖𝑗 = −𝑤𝑖𝑗
for all 𝑗 ̸= 𝑖. Since our model is undirected, 𝐿 is a symmetric positive semidefinite

matrix, thus Φ is a quadratic and convex function of 𝑥. We can calculate the gradient

of Φ
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∇Φ(𝑥) = 𝐿𝑥−𝐵 (4.12)

Since we assume normalized weights,
∑︀𝑛

𝑗=1𝑤𝑖𝑗 = 1 for all agents 𝑖, we can rework

(4.9) to simulate a gradient descent method

𝑥(𝑡+ 1) = 𝑥(𝑡)−∇Φ(𝑥(𝑡)) (4.13)

with 𝑥(0) = 𝑠 in the FJ model. Next, we will prove that the gradient descent method

above converges to the equilibrium 𝑥* = 𝐿−1𝐵. To do that, we first need to prove the

following lemmas

Lemma 4.22. For any time step 𝑡 ≥ 0, we have

𝑥(𝑡+ 1)− 𝑥* = 𝐴(𝑥(𝑡)− 𝑥*) (4.14)

where 𝐴 is the averaging matrix in (4.10).

Proof. Substituting (4.12) into (4.13) gives us

𝑥(𝑡+ 1) = 𝑥(𝑡)−𝐿𝑥(𝑡) +𝐵

But 𝐵 = 𝐿𝑥*, therefore

𝑥(𝑡+ 1) = 𝑥(𝑡)−𝐿𝑥(𝑡) +𝐿𝑥*

= 𝑥(𝑡)−𝐿(𝑥(𝑡)− 𝑥*)

Subtracting 𝑥* from the equation above gives us

𝑥(𝑡+ 1)− 𝑥* = 𝑥(𝑡)− 𝑥* −𝐿𝑥(𝑡) +𝐿𝑥*

= (𝐼 −𝐿)(𝑥(𝑡)− 𝑥*)

where 𝐼 is the 𝑛 × 𝑛 identity matrix. We observe that 𝐼 − 𝐿 = 𝐴, where 𝐴 is the

averaging matrix in (4.10), therefore

𝑥(𝑡+ 1)− 𝑥* = 𝐴(𝑥(𝑡)− 𝑥*)
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For simplicity, let 𝑒𝑡 = 𝑥(𝑡)−𝑥*. Next, we show that if 𝐴’s eigenvalues lie in (−1, 1),

then the distance for the equilibrium, 𝑒𝑡 strictly decreases at each time step 𝑡.

Lemma 4.23. If max𝑖 |𝜆𝑖(𝐴)| < 1, then, for any time step 𝑡 ≥ 0, we have

‖𝑒𝑡+1‖22 < ‖𝑒𝑡‖22 (4.15)

Proof. Utilizing Lemma 4.22, we have that

‖𝑒𝑡‖22 − ‖𝑒𝑡+1‖22 = ‖𝑒𝑡‖22 − 𝑒𝑇𝑡+1𝑒𝑡+1

= ‖𝑒𝑡‖22 − (𝐴𝑒𝑡)
𝑇 (𝐴𝑒𝑡)

= 𝑒𝑇𝑡 𝑒𝑡 − 𝑒𝑇𝑡 𝐴
2𝑒𝑡

= 𝑒𝑇𝑡 (𝐼 −𝐴2)𝑒𝑡

All eigenvalues of 𝐴 lie in (−1, 1), thus all eigenvalues of 𝐴2 lie in (0, 1). Therefore,

all eigenvalues of 𝐼 −𝐴2 are strictly positive, thus 𝐼 −𝐴2 is a positive definite matrix,

which implies that, for any 𝑒𝑡, 𝑒𝑡+1

‖𝑒𝑡‖22 − ‖𝑒𝑡+1‖22 > 0

We can now combine these two lemmas to prove the following theorem

Theorem 4.24. The gradient descent method described at (4.13) converges to the Nash

equilibrium 𝑥* of the FJ model, which is also the point where the potential function Φ

attains its minimum value.

Proof. Recall that, in the FJ model, there exists at least one agent 𝑖 that has 𝑤𝑖𝑖 > 0.

Therefore, 𝐴 is a substochastic matrix and its maximum eigenvalue max𝑖 |𝜆𝑖(𝐴)| < 1.

From Lemmas 4.22 and 4.23, the gradient descent method described at (4.13) decreases

the distance from 𝑥* at each iteration step, therefore it converges to the Nash equilibrium

𝑥* of the FJ model.

Therefore, we observe that, in undirected linear models, concurrent best-response is

equivalent to performing a gradient descent method on the model’s potential function,

and in these models all agents converge to a stable state.
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4.4.2 Mirror Descent

In an effort to generalize the gradient descent method beyond Euclidean metric

spaces, a variant of the method called mirror descent was developed. This method

utilizes the concept of Bregman divergence instead of the Euclidean norm as a measure

of displacement, which we define below

Definition 4.25 (Bregman Divergence). Let 𝜓 : Ω → R be continuously differentiable

and strictly convex function, defined on a closed convex set Ω. Then, for any two points

𝑥, 𝑦 ∈ Ω, the Bregman divergence under 𝜓 is defined as

𝒟𝜓(𝑥, 𝑦) = 𝜓(𝑥)− 𝜓(𝑦)− ⟨∇𝜓(𝑦), 𝑥− 𝑦⟩ (4.16)

For example, to get the Euclidean distance, we have 𝜓(𝑥) = ‖𝑥‖22/2. Then, 𝒟𝜓(𝑥, 𝑦) =

‖𝑥 − 𝑦‖22/2. Intuitively, the Bregman divergence calculates the difference between the

value of 𝜓 at 𝑥 and the first order Taylor expansion of 𝜓 around 𝑦, evaluated at 𝑥.

Bregman divergence generalizes the squared Euclidean distance to a class of distances,

all sharing similar properties, and has numerous applications in machine learning and

clustering. It posseses several useful properties, and we present a few of them below

∙ Nonnegativity: 𝒟𝜓(𝑥, 𝑦) ≥ 0 for all 𝑥, 𝑦. Specifically, 𝒟𝜓(𝑥, 𝑦) = 0 if and only if

𝑥 = 𝑦.

∙ Asymmetry: In general, we have that 𝒟𝜓(𝑥, 𝑦) ̸= 𝒟𝜓(𝑦, 𝑥).

∙ Linearity in 𝜓: For any 𝑎 > 0, 𝒟𝜓+𝑎𝜑(𝑥, 𝑦) = 𝒟𝜓(𝑥, 𝑦) + 𝑎𝒟𝜑(𝑥, 𝑦).

Now we are ready to define the method of mirror descent

Definition 4.26 (Mirror Descent). Consider a multi-variable function 𝐹 , a point 𝑥𝑛

and a function 𝜓 that is continuously differentiable and strictly convex. Let 𝐹 be defined

and differentiable in a neighborhood of 𝑥𝑛. Then, in the mirror descent method, at step

𝑛+ 1 of the algorithm, we move to the point

𝑥𝑛+1 = 𝑎𝑟𝑔min
𝑥

(︁
⟨∇𝐹 (𝑥𝑛), 𝑥⟩+

1

𝛾𝑛
𝒟𝜓(𝑥, 𝑥𝑛)

)︁
, 𝑛 ≥ 0 (4.17)

Notice that, since for 𝜓(𝑥) = ‖𝑥‖22/2 the Bregman divergence coincides with the

Euclidean distance, for this function 𝜓 the mirror descent method coincides with the

gradient descent, as defined in Definition 4.20. While mirror descent has not seen broad

use in the field of opinion dynamics as of yet, we believe that it can be utilized to provide

significant insight on the convergence properties of several models.
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4.5 Energy as a Generating Function

We conclude our presentation of fundamental techniques used to analyze opinion

formation models with the concept of the energy of a system. The energy approach

was developed as a way to study the convergence properties of complex models, where

step-by-step methods fail. In several systems, we may lack the guarantees about specific

quantities changing between two consecutive time steps. However, in these cases, we

can use the concept of the system’s energy as a generating function that bands together

several continuous time steps in order to observe a specific change in a property of

the system. This change, for example, could be a decrease in the distance from an

equilibrium point or a decrease in a potential-like function of the model, if one exists.

The notion of a system’s energy was first introduced by Chazelle [33] to study a

generalization of opinion formation models, called influence systems. Therefore, the

technique, besides powerful, is also quite general and possibly applicable on numerous

models. Consequently, in our opinion, attempts to apply the ideas presented here on sev-

eral variations of the Hegselmann-Krause model and other non-linear models in general,

would hold significant merit and may provide fascinating new results.

4.5.1 Definition of the Total 𝑠-Energy

We begin by defining the concept of the total 𝑠-energy of a multiagent system, intro-

duced by Chazelle, who also proved that its convergence for any real 𝑠 > 0. [33].

Definition 4.27 (Total 𝑠-Energy). Consider an infinite sequence of graphs 𝐺0, 𝐺1, 𝐺2,

. . ., where each 𝐺𝑡 has 𝑛 nodes labeled 1, 2, . . . , 𝑛, with each node representing an agent.

We assume the agents’ opinions lie in a 𝑑-dimensional Euclidean space and denote agent

𝑖’s opinion at time 𝑡 with 𝑥𝑖(𝑡) ∈ R𝑑. Then, the total 𝑠-energy of this system is defined

as

𝐸(𝑠) =
∑︁
𝑡≥0

∑︁
(𝑖,𝑗)∈𝐺𝑡

‖𝑥𝑖(𝑡)− 𝑥𝑗(𝑡)‖𝑠2 (4.18)

where the exponent 𝑠 ∈ C is, in the most general setting, a complex variable.

We observe that 𝐸(𝑠) encodes all of the edge lengths for every 𝐺𝑡 in the graph

sequence. We call this graph sequence that shares the same nodes the communication

network of the system, and we make no assumptions about it in our definition above. In

fact, this model is so general, there is no obvious reason why 𝐸(𝑠) should ever converge,

for any 𝑠. Later in this chapter we provide a proof that 𝐸(𝑠) converges for any 𝑠 ∈ R+.

However, before we continue, we provide some general intuition behind the concept of
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𝑠-energy, in order to assist in the understanding of the ideas and results presented in

this section.

4.5.2 Bidirectional Systems

Recall the constraints imposed on the communication network of the Network-HK

model presented in Section 3.1.1. We attempt to generalize them by defining bidirectional

agreement systems in general. Our definition introduces the model for the 1-dimensional

case, however it contains all of the necessary ideas and the extension of the model to

higher dimensions can be done in many ways in a straightforward fashion.

Definition 4.28 (Bidirectional Agreement System). Consider 𝑛 agents expressing opin-

ions 𝑥1(𝑡), 𝑥2(𝑡), . . . , 𝑥𝑛(𝑡) ∈ R at time 𝑡. The communication network consists of an

infinite sequence of graphs 𝐺0, 𝐺1, 𝐺2, . . ., with 𝐺𝑡 being a function of the system’s con-

figuration at times 0, . . . , 𝑡− 1. Let 𝒩𝑖(𝑡) = {𝑗 : (𝑖, 𝑗) ∈ 𝐺} denote the set of neighbors

of 𝑖, 𝑚𝑖(𝑡) = min𝑗∈𝒩𝑖(𝑡) 𝑥𝑗(𝑡) the minimum and 𝑀𝑖(𝑡) = max𝑗∈𝒩𝑖(𝑡) 𝑥𝑗(𝑡) the maximum

opinion in 𝑖’s neighborhood at time 𝑡. Also, let 0 < 𝜌 ≤ 1/2 be an agreement parameter

that is time-invariant and uniform for all agents. Then, in a bidirectional agreement

system, at time 𝑡 each agent 𝑖 moves to 𝑥𝑖(𝑡+ 1), where

(1− 𝜌)𝑚𝑖(𝑡) + 𝜌𝑀𝑖(𝑡) ≤ 𝑥𝑖(𝑡+ 1) ≤ 𝜌𝑚𝑖(𝑡) + (1− 𝜌)𝑀𝑖(𝑡) (4.19)

Note that the model does not make any assumptions on the generation of each 𝐺𝑡,

nor on their connectivity properties. It is believed that bidirectional systems are the

widest class of systems that allow for reasoning on their convergence properties, since

the general case of directed graphs precludes such analysis. In addition, note that the

model is nondeterministic, with the communication network and the agents’ motion

being completely arbitrary, and it does not imply symmetry among neighbors. Indeed,

the set of constraints that Definition 4.28 imposes on agent behavior is fairly weaker

than the usual set of constraints associated with bidirectional models.

Recall that in non-linear systems, 𝑥(𝑡 + 1) = 𝐴(𝑡)𝑥(𝑡), where 𝐴 is a row-stochastic

matrix with positive entries 𝑎𝑖𝑗(𝑡) for all 𝑖, 𝑗 where 𝑗 ∈ 𝒩𝑖(𝑡). Then, if we denote by 𝑙𝑖

the leftmost and by 𝑟𝑖 the rightmost neighbor of 𝑖, we get a set of two constraints, which

follow directly from (4.19)

∙ Mutual confidence: Pairs of 𝑎𝑖𝑗 , 𝑎𝑗𝑖 do not have exactly one zero; they are either

both positive or both zero.

∙ No extreme influence: For any agent 𝑖 that is not fully-stubborn, max{𝑎𝑖𝑙𝑖(𝑡), 𝑎𝑖𝑟𝑖(𝑡)}
≤ 1− 𝜌.
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We immediately see that the above conditions are weaker than those of Section 3.1.1.

Intuitively, for bidirectional systems to converge asymptotically, agents may be influ-

enced a lot by non-extreme positions but must be the influence that extreme positions

exert upon them must be bounded. It has been shown that such bidirectional systems

converge asymptotically [24, 25, 49], and the convergence rate is bounded by 𝜌−𝒪(𝑛) [33].

4.5.3 Bounds on the Total 𝑠-Energy

It is easy to see that understanding opinion formation models, or agreement sys-

tems, in their most general setting is equivalent to understanding backward products of

stochastic matrices

𝐴(𝑡)𝐴(𝑡− 1) . . .𝐴(0)

which relate to time-inhomogeneous Markov chains. Although not much is known

about such Markov chains, we can make some interesting observations here. Note that

if a product such as the one above converges, then as time goes by, the product will tend

to a matrix of rank one.

To see why this is true, consider the following geometric interpretation. Each row of

𝐴(0) corresponds to a specific point in R𝑛. Construct a convex polytope equal to the

convex hull of all these points, denoted by 𝑐𝑜𝑛𝑣(𝐴(0)). When𝐴(0) is multiplied by𝐴(1),

each row of the product is a convex combination of the rows of 𝐴(0), hence each point

of the product is a convex combination of the points specified by 𝐴(0) and lies inside

the convex hull 𝑐𝑜𝑛𝑣(𝐴(0)). Therefore, 𝑐𝑜𝑛𝑣(𝐴(1)𝐴(0)) ⊆ 𝑐𝑜𝑛𝑣(𝐴(0)). Repeating the

process, we get a sequence of convex polytopes

𝑐𝑜𝑛𝑣(𝐴(𝑡) . . .𝐴(0)) ⊆ . . . ⊆ 𝑐𝑜𝑛𝑣(𝐴(1)𝐴(0)) ⊆ 𝑐𝑜𝑛𝑣(𝐴(0))

that is decreasing in volume. Recall Definition 3.3 of the coefficient of ergodicity and

observe that it essentially is a measure of how fast this sequence of convex polytopes

decreases in volume, and the matrices approach a matrix of rank one. However, it is a

local tool in the sense that it analyzes the model in a step-by-step fashion. In contrast,

the notion of the total 𝑠-energy presented in this section is a global tool; it monitors the

decrease of this sequence over all time steps, with parameter 𝑠 essentially playing the

role of frequency in Fourier analysis.

As stated before, there is no obvious reason as to why the total 𝑠-energy of a system

should ever converge. However, Chazelle proved in 2010 that, for bidirectional agreement

systems where all agents express opinions in [0, 1]𝑑, the total 𝑠-energy is bounded for any
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real 𝑠 > 0 and also provided an upper bound on the convergence rate [33]. We present

these two theorems here for the 1-dimensional case, and we refer to Chazelle’s paper for

the proofs.

Theorem 4.29. Consider a 𝑛-agent bidirectional agreement system where each agent

expresses an opinion in [0, 1], and let 𝐸𝑛(𝑠) denote the maximum value of the total

𝑠-energy, over all times and all 𝑛-node graph sequences. Then,

𝐸𝑛(𝑠) ≤

⎧⎨⎩𝜌−𝒪(𝑛) 𝑓𝑜𝑟 𝑠 = 1.

𝑠1−𝑛𝜌−𝑛
2−𝒪(1) 𝑓𝑜𝑟 0 < 𝑠 < 1

(4.20)

Since no edge length exceeds 1, 𝐸𝑛(𝑠) ≤ 𝐸𝑛(1) for 𝑠 ≥ 1, therefore 𝐸𝑛(𝑠) is bounded

from above for any real 𝑠 > 0.

However, if we attempt to bound the convergence rate of the system, we are immedi-

ately faced with the obvious difficulty that, in an adversarial setting, an adversary can

always provide us with a graph 𝐺𝑡 that is an independent set for as long as it wants and

then at some time into the future connect all edges permanently to the network in order

to make the agents reach consensus. We circumvent this difficulty by defining notion of

asymptotic convergence. Specifically, given 0 < 𝜀 < 1/2, we say that step 𝑡 is trivial if

all the edges in 𝐺𝑡 have length at most 𝜀. We then proceed to bound the communication

count 𝐶𝜀, defined as the total number of non-trivial steps for a given 𝜀. Intuitively, this

notion of convergence ignores microscopic motions of the agents and specifies defines

convergence as the event where all agents have formed independent clusters of radius

𝜀. From a macroscopic point of view, this notion implies that the system eventually

freezes.

Theorem 4.30. Consider a 𝑛-agent bidirectional agreement system where each agent

expresses an opinion in [0, 1]. Then, the maximum communication count is bounded by

above

𝐶𝜀 ≤ min
{︁1

𝜀
𝜌−𝒪(𝑛), (𝑙𝑜𝑔

1

𝜀
)𝑛−1𝜌−𝑛

2−𝒪(1)
}︁

(4.21)

4.5.4 Kinetic 𝑠-Energy

While the concept of the total 𝑠-energy is extremely useful for macroscopic analysis

of agreement systems, sometimes variants of the concept are more convenient, and such

is the case with opinion formation models. In particular, we define the kinetic 𝑠-energy

of a system as follows
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Definition 4.31 (Kinetic 𝑠-Energy). Consider an infinite sequence of graphs 𝐺0, 𝐺1, 𝐺2,

. . ., where each 𝐺𝑡 has 𝑛 nodes labeled 1, 2, . . . , 𝑛, with each node representing an agent.

We assume the agents’ opinions lie in a 𝑑-dimensional Euclidean space and denote agent

𝑖’s opinion at time 𝑡 with 𝑥𝑖(𝑡) ∈ R𝑑. Then, the kinetic 𝑠-energy of this system is defined

as

𝐾(𝑠) =
∑︁
𝑡≥0

𝑛∑︁
𝑖=1

‖𝑥𝑖(𝑡+ 1)− 𝑥𝑖(𝑡)‖𝑠2 (4.22)

Recall our use of the kinetic 𝑠-energy for 𝑠 = 2 in Section 3.3, to prove the conver-

gence of the HK model with fully-stubborn agents. Such applications of the concept

demonstrate the usefulness of this mathematical tool in the analysis of opinion forma-

tion models and their convergence properties. We believe that, when applied correctly,

the concept of the kinetic 𝑠-energy can simplify and, most importantly, generalize ex-

istent proofs of convergence on several models, as well as provide new insight on the

convergence properties of models we know very little about.



Chapter 5

Convergence of Variations of the

Hegselmann - Krause Model

In this chapter, we analyze the Network-HK and Inertial-HK models using the con-

cept of the system’s 𝑠-Energy (Section 4.5). Specifically, we utilize the system’s kinetic

𝑠-energy to prove that the Network-HK model converges to an equilibrium, as stated by

Theorem 3.5. Furthermore, we wish to provide a deeper understanding of the message-

passing protocol introduced in the Inertial-HK model (Section 3.3.2), as we believe its

conception is not trivial and there is significant merit in understanding the thought pro-

cess of deriving such a protocol, if one hopes to apply the 𝑠-energy approach to study

the convergence properties of other models as well.

5.1 Energy Approach to the Network-HK Model

The purpose of this section is to utilize the 𝑠-energy approach to prove Theorem

3.5. Recall that, to show that Theorem 3.5 holds, we require only Lemmas 3.2 and 3.4,

namely that there is a time 𝑡 when the agents have split up into weakly connected sets,

and that every weakly connected set of agents eventually arrives at consensus.

Our proof of Lemma 3.2 is a simple temporal graph argument that we retain in this

proof. Therefore, we focus our analysis on Lemma 3.4. Our proof is quite similar to the

proof of Theorem 3.12 which shows that the Inertial-HK model converges to a stable

state. As in that case, we will first provide an upper bound of the kinetic 𝑠-energy of

the system, for the case 𝑠 = 2, and then proceed to show that when the kinetic 2-energy

is bounded, any weakly connected set of agents converges to a single opinion.

Lemma 5.1. Let (𝐺(𝑉,𝐸), 𝜀,𝑥(0)) be an instance of the Network-HK model, where 𝑉

is weakly connected. Then, all agents converge to a single opinion 𝑥*.

60
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Proof. Note that the bound on the kinetic 2-energy of the Inertial-HK system makes

no assumptions on the connectivity of agents. Therefore, we can use the same message-

passing protocol to arrive at exactly the same bound for the kinetic 2-energy, with very

few alterations on the proof. Specifically, agent 𝑖’s neighborhood is different in the

Network-HK model, as it is influenced by the underlying graph, and is equal to

𝒩𝑖(𝐺𝑡, 𝑡, 𝜀) = {𝑗 : {𝑖, 𝑗} ∈ 𝐸 𝑎𝑛𝑑 |𝑥𝑖(𝑡− 1)− 𝑥𝑗(𝑡− 1)| ≤ 𝜀} (5.1)

Furthermore, since the Network-HK model extends the original HK model simply

with the addition of an underlying graph, all agents’ inertias are equal to 1. Thus, for

the kinetic 2-energy, we get

𝐾(2) ≤ 𝑛2/4 (5.2)

It is easy to see that the proof of Lemma 3.11 holds even if we make the alterations

above, as they do not have any effect on the message-passing protocol or the arguments

used. However, the change in the model, and specifically in the neighborhood of each

agent, renders the proof of Theorem 3.12 insufficient. Therefore, we need to present a

different argument in order to prove that, in the Network-HK model, a weakly connected

set of agents reaches consensus, when the kinetic 2-energy is bounded.

The upper bound on the kinetic 2-energy that we get by 5.2 shows that, for any

arbitrarily small 𝛿 > 0, there exists a time step 𝑡𝛿 such that no agent moves by a

distance of more than 𝛿 at any time 𝑡 ≥ 𝑡𝛿. Consider a fixed time 𝑡0 > 𝑡𝛿, and let, for

brevity, 𝑥𝑖 = 𝑥𝑖(𝑡0) and 𝒩𝑖 = 𝒩𝑖(𝐺𝑡0 , 𝑡0, 𝜀) for each agent 𝑖. Again, we use primes and

double primes to indicate the equivalent quantities for times 𝑡0 + 1 and 𝑡0 + 2.

Recall our notation for the four distinct sets of agents from Section 3.3.2

∙ Let 𝐿𝑖𝑛𝑖 be the set of agents located at 𝑥𝑖−𝜀−𝒪(𝛿) at time 𝑡0 and at 𝑥𝑖−𝜀+𝒪(𝛿)

at time 𝑡0+1. This set consists of the agents that joined 𝑖’s neighborhood at 𝑡0+1

from the left side of agent 𝑖.

∙ Let 𝐿𝑜𝑢𝑡𝑖 be the set of agents located at 𝑥𝑖−𝜀+𝒪(𝛿) at time 𝑡0 and at 𝑥𝑖−𝜀−𝒪(𝛿)

at time 𝑡0 + 1. This set consists of the agents that left 𝑖’s neighborhood at 𝑡0 + 1

from the left side of agent 𝑖.

∙ Let 𝑅𝑖𝑛𝑖 be the set of agents located at 𝑥𝑖+𝜀+𝒪(𝛿) at time 𝑡0 and at 𝑥𝑖+𝜀−𝒪(𝛿)

at time 𝑡0+1. This set consists of the agents that joined 𝑖’s neighborhood at 𝑡0+1

from the right side of agent 𝑖.
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∙ Let 𝑅𝑜𝑢𝑡𝑖 be the set of agents located at 𝑥𝑖+𝜀−𝒪(𝛿) at time 𝑡0 and at 𝑥𝑖+𝜀+𝒪(𝛿)

at time 𝑡0 + 1. This set consists of the agents that left 𝑖’s neighborhood at 𝑡0 + 1

from the right side of agent 𝑖.

It is obvious that all the sets introduced above are disjoint, and their union is the

symmetric difference between 𝒩𝑖 and 𝒩 ′
𝑖 . The locations 𝑥′𝑖 and 𝑥

′′
𝑖 of agent 𝑖 at times

𝑡0 + 1 and 𝑡0 + 2 are given by

|𝒩𝑖|𝑥′𝑖 =
∑︁

𝑗∈𝒩𝑖∩𝒩 ′
𝑖

𝑥𝑗 +
∑︁

𝑗∈𝐿𝑜𝑢𝑡
𝑖 ∪𝑅𝑜𝑢𝑡

𝑖

𝑥𝑗

|𝒩 ′
𝑖 |𝑥′′𝑖 =

∑︁
𝑗∈𝒩𝑖∩𝒩 ′

𝑖

𝑥′𝑗 +
∑︁

𝑗∈𝐿𝑖𝑛
𝑖 ∪𝑅𝑖𝑛

𝑖

𝑥′𝑗

Since all 𝑥′𝑘 and 𝑥′′𝑘 are of the form 𝑥𝑘 ± 𝒪(𝛿), subtracting the two identities above

shows that

(|𝒩 ′
𝑖 | − |𝒩𝑖|)𝑥𝑖 = (|𝐿𝑖𝑛𝑖 | − |𝐿𝑜𝑢𝑡𝑖 |)(𝑥𝑖 − 𝜀) + (|𝑅𝑖𝑛𝑖 | − |𝑅𝑜𝑢𝑡𝑖 |)(𝑥𝑖 + 𝜀)±𝒪(𝛿)𝑛 (5.3)

The dynamics are translation-invariant, thus we can set 𝑥𝑖 = 0. If we choose a small

enough 𝛿, the integrality of the set cardinalities implies that the net flow of neighbors

on the left of agent 𝑖 is the same as it is on the right

|𝐿𝑜𝑢𝑡𝑖 | − |𝐿𝑖𝑛𝑖 | = |𝑅𝑜𝑢𝑡𝑖 | − |𝑅𝑖𝑛𝑖 | (5.4)

As with the proof in Section 3.3.2, our goal is to show that, at time 𝑡0, no agent is

undergoing a change of neighbors, thus all four terms of (5.4) are equal to zero. Suppose

that at least one term of (5.4) is positive, to arrive at a contradiction. Then, we focus

on the agents that are undergoing a change of neighbors between times 𝑡0 and 𝑡0 + 1.

Among these agents, we choose the one that ends up the furthest to the right at time

𝑡0 + 1, breaking ties by picking the agent with the largest index. We call this agent 𝑖,

and, without loss of generality, we assume that 𝑥𝑖(𝑡0 + 1) ≥ 𝑥𝑖(𝑡0), which means that

agent 𝑖 moves to the right at time 𝑡0 + 1. Later on, we show why our argument holds

even if 𝑥𝑖(𝑡0 + 1) < 𝑥𝑖(𝑡0) and agent 𝑖 moves to the left at time 𝑡0 + 1.

First of all, we see that 𝑅𝑜𝑢𝑡𝑖 must be empty, since if an agent 𝑗 ∈ 𝑅𝑜𝑢𝑡𝑖 , that would

imply the existence of an agent undergoing a change of neighbors and landing to the

right of agent 𝑖, which contradicts our definition of 𝑖. Therefore, 𝑅𝑜𝑢𝑡𝑖 = ∅, which, in
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turn, implies that 𝐿𝑖𝑛𝑖 ̸= ∅, since we assumed that not all four terms of (5.4) can be

zero. We proceed to pick an agent 𝑘 ∈ 𝐿𝑖𝑛𝑖 , and we study his motion between times 𝑡0

and 𝑡0 + 1. Note that, since agent 𝑘 joins 𝑖’s neighborhood and 𝑖 moves to the right at

time 𝑡0 + 1, 𝑘 must move to the right as well, thus we have 𝑥𝑘(𝑡0 + 1) ≥ 𝑥𝑘(𝑡0). We

distinguish between three cases

i. |𝑅𝑜𝑢𝑡𝑘 | > |𝑅𝑖𝑛𝑘 |: This means that there are more agents which leave 𝑘’s neighbor-

hood from the right than join it. However, our set of agents is weakly connected.

Therefore, there exists a time 𝑡 in the future where each of these agents has to re-

enter 𝑘’s neighborhood. Since 𝑅𝑘 is finite, it follows that there is a time where there

cannot be more agents leaving 𝑅𝑘 than joining and, at that time, |𝑅𝑜𝑢𝑡𝑘 | ≤ |𝑅𝑖𝑛𝑘 |.
Thus, this case is reduced to either |𝑅𝑜𝑢𝑡𝑘 | < |𝑅𝑖𝑛𝑘 |, or |𝑅𝑜𝑢𝑡𝑘 | = |𝑅𝑖𝑛𝑘 |.

ii. |𝑅𝑜𝑢𝑡𝑘 | < |𝑅𝑖𝑛𝑘 |: This implies that 𝐿𝑖𝑛𝑘 ̸= ∅. Therefore, we pick an agent in 𝐿𝑖𝑛𝑘 and

continue inductively, noting that every time this case holds, we pick an agent that

is to the left of all other agents picked so far. Because the set of agents is finite, in

this case we eventually pick the leftmost agent 𝑙 which has 𝐿𝑖𝑛𝑙 = ∅ by definition,

thus arriving at a contradiction.

iii. |𝑅𝑜𝑢𝑡𝑘 | = |𝑅𝑖𝑛𝑘 |: Here, we can distinguish even further between the case where

𝐿𝑖𝑛𝑘 ̸= ∅ and the case where 𝐿𝑖𝑛𝑘 = ∅. In the first, we can pick an agent in 𝐿𝑖𝑛𝑘 as

the case above, and eventually arrive at a contradiction. In the second, we have

𝐿𝑖𝑛𝑘 = ∅, |𝑅𝑜𝑢𝑡𝑘 | = |𝑅𝑖𝑛𝑘 | > 0, which imply 𝐿𝑜𝑢𝑡𝑘 = ∅. We observe that, since the other

two cases are resolved, the only case that remains is the case where |𝑅𝑜𝑢𝑡𝑘 | = |𝑅𝑖𝑛𝑘 |,
continuously, for all times 𝑡 ≥ 𝑡0. Therefore, in this case we see that it is possible

for the communication graph to not stabilize, as edges can appear and dissapear

arbitrarily, as long as agent 𝑖 has an edge with any agent to his right sometime in

the future, to preserve the property of weak connectivity. Thus, we arrive at an

important observation; the communication graph need not converge for the agents

to reach consensus. Indeed, since |𝑅𝑜𝑢𝑡𝑘 | = |𝑅𝑖𝑛𝑘 | > 0 and 𝐿𝑖𝑛𝑘 = 𝐿𝑜𝑢𝑡𝑘 = ∅, we note

that agent 𝑘 at every time step has at most 𝑛−1
2 agents to the right, and for any

one of these agents, say 𝑗, we have that 𝑥𝑗(𝑡) − 𝑥𝑘(𝑡) ≥ 𝜀 − 𝛿. Thus, at every

time step, agent 𝑘 moves by a fraction of at least 2
𝑛−1(𝜀 − 𝛿) to the right. But

every agent moves at most 𝛿, therefore, for 𝛿 < 2𝜀
𝑛+1 we arrive once again at a

contradiction.

It is easy to see that our argument does not use time-directionality, except for the

case |𝑅𝑜𝑢𝑡𝑘 | > |𝑅𝑖𝑛𝑘 |. However, in this case, our argument still holds if we reverse the

direction of time, since we can switch the arguments for the first two cases and have an

argument that holds for the reverse direction of time. Thus, in the case where agent 𝑖
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moves to the left at time 𝑡0 + 1 and 𝑥𝑘(𝑡0 + 1) < 𝑥𝑘(𝑡0), we can reverse the direction

of time, exchange the roles of 𝑡0 and 𝑡0 + 1, get 𝑥𝑘(𝑡0 + 1) ≥ 𝑥𝑘(𝑡0) and our argument

above still holds. Note that we must swap the superscripts in and out of the sets and,

by symmetry, we now have to pick the agent that starts, rather than ends up, furthest

to the right. By the preservation of the agents’ ordering of the HK model, we get that

this change makes no difference to our argument.

The finiteness of the set of agents 𝑉 implies that, eventually, we arrive at a contra-

diction, through either one of these cases. Therefore, our assumption that not all four

terms of (5.4) can be zero is wrong, and there is a time step after which all agents are

endowed with a fixed set of neighbors. Thus, the communication network converges, and

the model’s dynamics are specified by the powers of a fixed stochastic matrix 𝐴. There-

fore, we essentially have an instance of the DeGroot model (Section 2.1.1), enhanced

with self-loops which imply that 𝐴’s diagonal is strictly poistive. As we have seen in

Section 2.1.1, in this model all agents converge to a single opinion 𝑥*, and our proof is

complete.

Now we can combine Lemma 3.2 and Lemma 5.1 to show, once again, that Theorem

3.5 holds, thus proving, with the use of the 𝑠-energy of the system, that the Network-HK

model converges to a stable state.

5.2 Analysis of the Inertial-HK Model

In this section we attempt to shed light on the convergence proof of the Inertial-HK

model (Section 3.3.2). Specifically, we focus on Lemma 3.11, which provides an upper

bound on the kinetic 2-energy of the system. We acknowledge that the message-passing

protocol presented in that proof seems a little arbitrary at first, and there seems to be

no intuition as to why agent 𝑖 spends and exchanges the amounts she does. We provide

a different line of thinking and work the model backwards to arrive, surprisingly, at

exactly the message-passing protocol that we demonstrated earlier. This contribution

follows from our wish to provide some much wanted intuition behind the proof of Section

3.3.2, and assist the reader in its understanding.

First, we rework the definition of the kinetic 2-energy and tailor it to our model,

as this will assist our thought process. In the rest of this section, 𝐾(2) will denote

the kinetic 2-energy of the system between two time steps 𝑡 and 𝑡+ 1, for convenience.

Recall the definition of the kinetic 2-energy (Definition 4.31) and of the Inertial-HK

model (3.7). If we consider two time steps 𝑡 and 𝑡+ 1 and focus only on a single agent

𝑖, combining these two equations, we get
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𝐾𝑖(2) = ‖𝑥𝑖(𝑡+ 1)− 𝑥𝑖(𝑡)‖22 (5.5)

=

⃦⃦⃦⃦
⃦⃦𝜆𝑖(𝑡)𝑥𝑖(𝑡) + 𝜆𝑖(𝑡)

|𝒩𝑖(𝑡)|
∑︁

𝑗∈𝒩𝑖(𝑡)

𝑥𝑗(𝑡)

⃦⃦⃦⃦
⃦⃦
2

2

(5.6)

=
𝜆2𝑖 (𝑡)

|𝒩𝑖(𝑡)|2

⃦⃦⃦⃦
⃦⃦ ∑︁
𝑗∈𝒩𝑖(𝑡)

𝑥𝑗(𝑡)− 𝑥𝑖(𝑡)

⃦⃦⃦⃦
⃦⃦
2

2

(5.7)

We note that all 𝜆𝑖(𝑡) are bounded by 1 and |𝒩𝑖(𝑡)| ≥ 1, as 𝑖 ∈ 𝒩𝑖(𝑡), for all agents 𝑖

and times 𝑡. Utilizing these observations, as well as the triangle inequality, we arrive at

𝐾𝑖(2) ≤
∑︁

𝑗∈𝒩𝑖(𝑡)

‖𝑥𝑗(𝑡)− 𝑥𝑖(𝑡)‖22

𝐾𝑖(2) ≤
∑︁

𝑗∈𝒩𝑖(𝑡)

‖𝑑𝑖𝑗‖22 (5.8)

where 𝑑𝑖𝑗 = 𝑥𝑖(𝑡)− 𝑥𝑗(𝑡).

In our opinion, to arrive smoothly at the protocol demonstrated earlier, we must work

backwards in the model, and first address the important question; when we say say we

want to bound the kinetic 2-energy, what exactly do we mean? It is obvious that if we

can derive a function 𝑓(𝑥(𝑡)) such that 𝑓(𝑥(𝑡)) > 0 and 𝑓(𝑥(𝑡)) ≥ 𝐾(2) + 𝑓(𝑥(𝑡 + 1))

for any times 𝑡 and 𝑡 + 1, then the kinetic 2-energy is bounded by 𝑓(𝑥(0)) and, if that

quantity is finite, our work is done. This function plays the role of 𝐶(𝑥(𝑡)) in the previous

proof, in other words it denotes the amount of “money” that each agent possesses at

time 𝑡. Thus, we need to “guess” a function 𝑓 with the property that, for all times 𝑡

and 𝑡+ 1,

𝑓(𝑥(𝑡)) ≥
𝑛∑︁
𝑖=1

∑︁
𝑗∈𝒩𝑖(𝑡)

‖𝑑𝑖𝑗‖22 + 𝑓(𝑥(𝑡+ 1))

Breaking up 𝑓 into parts 𝑓𝑖 for each agent 𝑖, where 𝑓(𝑥(𝑡)) =
∑︀𝑛

𝑖=1 𝑓𝑖(𝑥(𝑡)), gives us

𝑓𝑖(𝑥(𝑡)) ≥
∑︁

𝑗∈𝒩𝑖(𝑡)

‖𝑑𝑖𝑗‖22 + 𝑓𝑖(𝑥(𝑡+ 1)) (5.9)

The reasonable line of thinking here is to let 𝑓𝑖(𝑥(𝑡+1)) = 0, and assume the lowest

possible value for 𝑓𝑖(𝑥(𝑡)), therefore arriving at a guess
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𝑓𝑖(𝑥(𝑡)) =
∑︁

𝑗∈𝒩𝑖(𝑡)

‖𝑑𝑖𝑗‖22 (5.10)

Now, if we define 𝑑′𝑖𝑗 = 𝑥𝑖(𝑡+ 1)− 𝑥𝑗(𝑡+ 1), 𝒩𝑖 = 𝒩𝑖(𝑡) and 𝒩 ′
𝑖 = 𝒩𝑖(𝑡+ 1), we can

observe the flow of “money” of agent 𝑖 between times 𝑡 and 𝑡+ 1 as

𝑓𝑖(𝑥(𝑡+ 1))− 𝑓𝑖(𝑥(𝑡)) =
∑︁
𝑗∈𝒩 ′

𝑖

‖𝑑′𝑖𝑗‖22 −
∑︁
𝑗∈𝒩𝑖

‖𝑑𝑖𝑗‖22 (5.11)

The equation above demonstrates how much money 𝑖 has to spend for each agent. At

this point, we need to look closer at 𝒩𝑖 and 𝒩 ′
𝑖 . We focus at one agent 𝑗, and distinguish

between four cases

∙ 𝑗 /∈ 𝒩𝑖∪𝒩 ′
𝑖 : In this trivial case, agent 𝑗 does not contribute to 𝑓𝑖(𝑥(𝑡+1))−𝑓𝑖(𝑥(𝑡)),

thus 𝑖 spends 0 for 𝑗.

∙ 𝑗 ∈ 𝒩𝑖 ∖ 𝒩 ′
𝑖 : 𝑗 was a neighbor of 𝑖 at time 𝑡 but left her neighborhood at time

𝑡 + 1. As 𝑗 can move arbitrarily far, and 𝑖 does not want to spend much money

for agents that are not even in her neighborhood, we bound 𝑗’s contribution to

𝑓𝑖(𝑥(𝑡+ 1)) by the boundary of 𝑖’s neighborhood. Therefore, 𝑖 spends 1− ‖𝑑𝑖𝑗‖22.

∙ 𝑗 ∈ 𝒩 ′
𝑖 ∖𝒩𝑖: 𝑗 became a neighbor of 𝑖 at time 𝑡+1 but was not in her neighborhood

at time 𝑡. Again, as 𝑗 could have been arbitrarily far at time 𝑡, we bound 𝑗’s

contribution to 𝑓𝑖(𝑥(𝑡)) by the boundary of 𝑖’s neighborhood. Therefore, 𝑖 spends

‖𝑑′𝑖𝑗‖22 − 1.

∙ 𝑗 ∈ 𝒩𝑖 ∩ 𝒩 ′
𝑖 : 𝑗 was a neighbor of 𝑖 both at 𝑡 and 𝑡 + 1. In this case, 𝑖 spends

‖𝑑′𝑖𝑗‖22 − ‖𝑑𝑖𝑗‖22.

Because our protocol forces 𝑖 to decide how much to spend for all agents at time 𝑡,

we would like to rework our second case into something similar to the fourth one, to

gain a unified spending rule for all agents of 𝑖 at time 𝑡. We then observe that

1− ‖𝑑𝑖𝑗‖22 = ‖𝑑′𝑖𝑗‖22 − ‖𝑑𝑖𝑗‖22 + 1− ‖𝑑′𝑖𝑗‖22 = ‖𝑑′𝑖𝑗‖22 − ‖𝑑𝑖𝑗‖22 −
⃒⃒
‖𝑑′𝑖𝑗‖22 − 1

⃒⃒
which also leads us to transform our third case to

‖𝑑′𝑖𝑗‖22 − 1 = −
⃒⃒
‖𝑑′𝑖𝑗‖22 − 1

⃒⃒
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and, surprisingly, we get a unified rule for all agents leaving or joining 𝑖’s neighbor-

hood at time 𝑡 + 1! Finally, we want to analyze the fourth case as well. We define

Δ𝑖 = 𝑥𝑖(𝑡+ 1)− 𝑥𝑖(𝑡) and Δ𝑗 = 𝑥𝑗(𝑡+ 1)− 𝑥𝑗(𝑡). Since 𝑑
′
𝑖𝑗 = 𝑑𝑖𝑗 +Δ𝑖 −Δ𝑗 , we get

‖𝑑′𝑖𝑗‖22 − ‖𝑑𝑖𝑗‖22 = ‖𝑑𝑖𝑗‖22 + ‖Δ𝑖 −Δ𝑗‖22 + 2𝑑𝑇𝑖𝑗(Δ𝑖 −Δ𝑗)− ‖𝑑𝑖𝑗‖22
= −2𝑑𝑇𝑖𝑗Δ𝑗 + 2𝑑𝑇𝑖𝑗Δ𝑗 + ‖Δ𝑖 −Δ𝑗‖22
= −2𝑑𝑇𝑖𝑗Δ𝑗 + 2𝑑𝑇𝑗𝑖Δ𝑗 + ‖Δ𝑖 −Δ𝑗‖22 − 4𝑑𝑇𝑖𝑗Δ𝑖 (5.12)

Here, recall the protocol defined at Section 3.2.2, and note that
⃒⃒⃒
‖𝑑′𝑖𝑗‖22 − 1

⃒⃒⃒
is ex-

actly the amount of money that 𝑖 spends (hence the minus sign) if 𝑗 leaves or joins 𝑖’s

neighborhood at time 𝑡 + 1, −2𝑑𝑖𝑗Δ
𝑇
𝑗 is a portion of the amount of money 𝑖 gives to

each agent 𝑗 ∈ 𝒩𝑖 and +2𝑑𝑗𝑖Δ
𝑇
𝑗 the equivalent portion of the amount 𝑖 gets from every

𝑗 ∈ 𝒩𝑖, at any time 𝑡.

We are now left with only two terms, ‖Δ𝑖−Δ𝑗‖22− 4𝑑𝑖𝑗Δ
𝑇
𝑖 . Recall our relaxation on

𝐾𝑖(2) at (5.5), where we bounded all inertias by their maximum value of 1. However, for

agents to have a positive amount of money remaining at time 𝑡+ 1, the inertias, along

with the cardinality of 𝑖’s neighborhood, must be included in the model. We recall

(3.13) which gives us
∑︀

𝑗∈𝒩𝑖
𝑑𝑖𝑗 = −𝜆−1

𝑖 |𝒩𝑖|Δ𝑖, where by 𝜆𝑖 we denote 𝜆𝑖(𝑡). Thus, by

summing over all 𝑗 ∈ 𝒩𝑖, we can reform our leftover terms to

∑︁
𝑗∈𝒩𝑖

‖Δ𝑖 −Δ𝑗‖22 + 4𝜆−1
𝑖 |𝒩𝑖|‖Δ𝑖‖22 (5.13)

At this point, our analysis is almost over. However, we are not quite there yet. For

our argument to hold, we need to relate the amount of money that 𝑖 spends at time 𝑡 to

a consumption of kinetic 2-energy, and we observe that the term
∑︀

𝑗∈𝒩𝑖
‖Δ𝑖 −Δ𝑗‖22 is

very close to the kinetic 2-energy, as defined in Definition 4.31. Thus, for the last time,

we rework the term into a consumption of kinetic 2-energy

∑︁
𝑗∈𝒩𝑖

‖Δ𝑖 −Δ𝑗‖22 =
∑︁
𝑗∈𝒩𝑖

‖Δ𝑖‖22 − 2Δ𝑇
𝑖 Δ𝑗 + ‖Δ𝑗‖22

=
∑︁
𝑗∈𝒩𝑖

−‖Δ𝑖‖22 − 2Δ𝑇
𝑖 Δ𝑗 − ‖Δ𝑗‖22 + 2‖Δ𝑖‖22 + 2‖Δ𝑗‖22

=
∑︁
𝑗∈𝒩𝑖

−‖Δ𝑖 +Δ𝑗‖22 + 2‖Δ𝑖‖22 + 2‖Δ𝑗‖22 (5.14)



Chapter 5. Convergence of Variations of the Hegselmann - Krause Model 68

Now, we observe that we can incorporate the two new terms 2‖Δ𝑖‖22 + 2‖Δ𝑗‖22 into

the exchange between 𝑖 and 𝑗, if we manage to reverse either term’s sign. Since we

already have a term relating to the kinetic 2-energy, equal to the amount of money that

𝑖 has left at time 𝑡+ 1, we decide to reverse the first term’s sign, and get

∑︁
𝑗∈𝒩𝑖

2‖Δ𝑖‖22 + 2‖Δ𝑗‖22 =
∑︁
𝑗∈𝒩𝑖

{︁
2‖Δ𝑗‖22 − 2‖Δ𝑖‖22 + 4‖Δ𝑖‖22

}︁
=

∑︁
𝑗∈𝒩𝑖

{︁
2‖Δ𝑗‖22 − 2‖Δ𝑖‖22

}︁
+ 4|𝒩𝑖|‖Δ𝑖‖22 (5.15)

We summarize our message-passing protocol, using all of the above equations. At

any time step 𝑡 ≥ 0, we apply the following two rules to every agent 𝑖

∙ Agent 𝑖 spends ‖Δ𝑖+Δ𝑗‖22 units of money for every 𝑗 ∈ 𝒩𝑖(𝑡), at each time 𝑡, and

gives to agent 𝑗 an amount equal to 2(𝑑𝑖𝑗 −Δ𝑗)
𝑇Δ𝑗 .

∙ For every agent 𝑗 that becomes, or ceases to be, a neighbor of 𝑖 at time 𝑡+1, agent

𝑖 spends
⃒⃒⃒
‖𝑑′𝑖𝑗‖22 − 1

⃒⃒⃒
.

Finally, we have to provide with an initial “guess” for 𝑓𝑖(𝑥(0)). Altough we have that

𝑓𝑖(𝑥(𝑡)) =
∑︀

𝑗∈𝒩𝑖(𝑡)
‖𝑑𝑖𝑗‖22, we want to include all agents in our definition of 𝑓(𝑥(0)),

and provide agent 𝑖 with some extra money. However, we want to bound the influence of

the agents that will not be in 𝒩𝑖(0), again by the boundary of 𝑖’s neighborhood. Thus,

we arrive at the following initial guess

𝑓𝑖(𝑥(0)) =

𝑛∑︁
𝑗=1

min
{︁
‖𝑥𝑖(0)− 𝑥𝑗(0)‖22, 1

}︁
(5.16)

Now recall the protocol used in Section 3.2.2, and notice that it is exactly the same

as the above. We conclude that we have successfully analyzed this protocol in reverse,

starting with a simple observation as to what constitutes a bound on the kinetic 2-energy,

and explaining our thought process and reasoning at each step. We hope this analysis

complements the proof provided in Section 3.2.2 and assists the reader in developing

deeper intuition about the model.

5.3 Future Work

In the final section of this thesis, we wish to present several open questions to the

reader, that we believe to be significant, thus the target for future work in the field of
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opinion dynamics. First of all, while the kinetic 2-energy of the Inertial-HK model is

bounded, a strong indication for convergence, it is still not known whether this model

converges or not. Furthermore, almost nothing is known about the convergence proper-

ties of the Generalized Asymmetric model, and the question relating to the convergence

of this model remains one of the most intriguing and important open problems in the

field.

The above open problems point to a need for developing clear and practical conditions

that distinguish convergent from non-convergent models. Perhaps the most important

open question of all is to determine what qualities of the interaction between agents

designate a convergent system, and why the lack of one leads to a non-convergent system.

Moreover, while convergence has been proven for the HK model, and several of its

variants, we do not have any tight bounds on the convergence time of any variant or

even the original HK model itself, as of yet.

Besides analyzing and studying existing models, a significant amount of work should

be pointed towards developing new, perhaps more complex, models, which provide a

better grasp on the real-world interactions between agents and simulate real social net-

works in a better way. To aid with the analysis of former and new models, novel ideas

and techniques also have to be developed. We already demonstrated a novel approach to

the analysis of a system in Section 4.5, the concept of a system’s 𝑠-energy, which raises

the question whether more innovative tools like this one could be developed, and lead

to better understanding of several model’s convergence properties. Finally, we state our

belief that many of these questions can be answered with the study of the newly intro-

duced field of influence systems, which generalize the concept of an opinion formation

model [14, 15].
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